The World Wide Web

15.1 Introduction

The World Wide Web — normally abbreviated to “the Web” or sometimes
“the Net” — is a vast collection of electronic documents each composed of a
linked set of pages that are written in HTML. The documents are stored in
files on many thousands of computers that are distributed around the
global Internet. The concepts behind the Web were conceived in 1989 by
Tim Berners-Lee when he was working at the European Particle Physics
Laboratory, CERN. An agreement was signed in 1994 between CERN and
the Massachusetts Institute of Technology, MIT to set up a consortium
whose aim was to further develop the Web and to standardize the protocols
associated with it. The National Center for Supercomputing Applications
(NCSA) also made a major contribution to the current widespread use of
the Web with the development of MOSAIC which was the first interactive
Web browser based on a graphical user interface. Since that time, many
related developments have taken place and, in terms of volume, the Web-is
now the largest source of data transferred over the Internet.

955

956

Chapter 15 The World Wide Web

15.2

We presented an overview of the operation of the Web and the essential
protocols and standards associated with it in Section 5.4. In this chapter we
expand upon these descriptions as we discuss the following:

8 URLs and HTTP: a URL comprises the name of the file and the location
of the server on the Internet where the file is stored while HTTP is the
protocol used by a browser program to communicate with a server
program over the Internet;

B HTML: this is used to define how the contents of each Web page are
displayed on the screen of the user’s machine - a PC, workstation, or
set-top box — and to set up the hyperlinks with other pages;

B forms and CGI script: these are used in e-commerce applications. Fillin
forms are integrated into a Web page and displayed on the screen of the
browser machine to get input from the user and a CGI script is then used
at the server to process this information;

B helper applications and plug-ins: these are used to process and output
multimedia information such as audio and/or video that is incorporated
into an HTML page;

8 Java applets: these are separate programs that are called from an HTML
page and downloaded from a Web server. They are then run on the
browser machine. Typically, they are used for code that may change or to
introduce interactivity to a Web page such as for games playing;

B JavaScript: this is also used to add interactivity to a Web page but in this
case the code is not a separate program but is included in the page’s
HTML code;

B security in e-commerce applications;
W the operation of the Web including the role of search engines and portals.

In relation to HTML and Java/JavaScript, since there are now many books on
each of these topics, the aim here is o give sufficient detail for you to build
up a working knowledge of them. Further details can then be found in the
bibliography for this chapter.

URLs and HTTP

The Web is made up of a vast collection of documents/pages which are
stored in files located on many thousands of (server) computers distributed
around the global Internet. As we saw in Section 2.3.3, using HTML it is pos-
sible to create on a server an electronic document in the form of a number of
pages with defined linkages between them. A user then gains access to a spe-
cific page using a client program called a browser which runs on a
multimedia PC/workstation/ set-top box that has access to the Internet.
Associated with each access request is the uniform resource locator
(URL) of the requested file/page. This comprises the domain name of the

15.2 URLsand HTTP i 957

server compiter on which the file/page is stored and the file name. To
obtain a page the browser communicates with a peer application process in
the named Web server computer using the HyperText transfer protocol
(HTTP). The contents of the named file are then transferred to the browser
and displayed on the screen according to the HTML markup descriptions the
page contains. A schematic diagram showing this overall mode of operation is
given in Figure 15.1. In this section we describe first the structure of URLs
and then the operation of HTTP. We defer how a URL is embedded into an
HTML page until section 15.3 when we describe HITML in more detail.

15.2.1 URLs
The standard format of the URL of an HTML page consists of:
the application protocol to be used to obtain the page,

the domain name of the server computer,

the pathname of the file,

the file name.
Thus an example URL referring to an HTML page on the Web is:

hitp://wunv. mpeg. org/mpeg-4/index. himl

where http is the protocol used to obtain the Web page, www.mpeg.org is
the domain name of the server, /mpeg-4is the path name, and index. html is the
file name.

User clicks on a hyperlink

|

Navigation fooliet

Server computer

A

Browser

Server Files containing

the linked set
of pages

Page on display screen

HTTP messages

Global Internet

Note: Hyperlinks contain a URL which includes the domain name of the server computer and the name of the file containing the
HTML code of the selected page

Figure 15.1 Basic principles and terminology associated with the World Wide Web.

958

Chapter 15 The World Wide Web

The main services offered by a browser were identified earlier in the
book in Figure 2.9. Normally, a browsing session starts by a user entering the
URL of the home page associated with a particular document in the location
field provided by the browser. If the URL of the page is not known then it can
be obtained either from the user’s own local Web/Net directory — which is
built up from previously given or previously used URLs — or by using the
search facility supported by the browser. We shall expand upon this feature
later in Section 15.7. Once a URL has been entered, the browser proceeds to
access the (home) page trom the server named in the URL using the speci-
fied protocol and the given file name.

Note that when we access most home pages it is not necessary to specify
the full URL since the server will look for the file named index.html if one is
not specified. For example, the home page associated with the above URL
could be specified as:

hitp/ fwww. mpeg. org

Note also that a final forward slash is used to indicate the URL relates to a
directory rather than a file name. For example:

hitp: /fwww. mpeg. org/mpeg-4/

In addition to obtaining a page/file using HTTP, most browsers allow a
user (o obtain a file using a range of other application protocols. In general,
these are standard Internet application protocols that predate the Web. For
example, as we saw in Section 14.4, FTP is the standard Internet application
protocol used to transfer a file, As a result, many servers still use FTP for all
file transters, Hence to obtain the contents of a file from such a server it is
possible to specify fipr as the protocol in a URL instead of Attp:. An example of
a typical URL is then of the form:

S/ Ayourcompany. com/pub/

Typically, this file will contain the list of publications/files — note that
pub/ indicates a directory - that are available from the file server
yourcompany.com. Normally, as we saw in Section 14.4.6, a user logs on to most
public domain FTP servers using anonymous for the user name and his or her
email address for the password. Hence these are entered when requested by
the browser. The browser then obtains the file using the FIP protocol and
displays the contents on the browser screen.

A protocol name of file is used to indicate the file is located on the same
computer as the browser; that is, your own computer. This is a useful facility
when developing a Web page since it allows vou 10 view the contents of the
page before vou make it available on the Web. An example URL is:

file:/ fhvpertext /htmlfmypage. him

Note that since some older versions of DOS allow only three characters in a
file name extension, the final [of Atml is sometimes missing.

15.2 URLsand HTTP | 959

The news: protocol relates to an Internet application protocol defined in
RFC 977 called the network news transfer protocol (NNTP). It is used to
transfer the text-only messages associated with UseNet which is also called
NetNews. This consists of a world-wide collection of newsgroups each of
which is a discussion forum on a specific topic. Two examples are COMP -
which has topics relating to computers, computer science, and the computer
industry — and SCI which has topics relating to the physical sciences and engi-
neering. A person interested in a particular topic can subscribe to be a
member of the related newsgroup. A subscriber can then post (send) an arti-
cle to all the other members of the same newsgroup and receive the articles
that are written by all the other members of the same group.

To do this, a user agent similar to that used with SMTP is used. This is
called a news reader and the protocol that is used to transfer the messages
associated with UseNet is NNTP. Some examples of the request/command
messages assoctated with NNTP are:

B LIST: this is used to obtain a list of all the current newsgroups and their
articles;

8 GROUP grp: this is used to obtain a list of the articies associated with the

newsgroup grp;
B ARTICLE #d: this is used to obtain article id;

W POST:d: this is used to send article id 1o the members of a specified
newsgroup.

The news: protocol enables a member to both read a news article and to
post an article from within a Web page. An example of a URL relating to a
newsgroup involved in the preparation of HTML documents is: '

news:comp.infosystems. wunw. authoring. html

Note that in this case the two forward slashes following the colon are not
required. When this URL is entered, typically, the news reader part of the
browser responds by first obtaining the list of artictes on this topic using the
GROUP command and the NNTP protocol. It then displays the articles on
the screen in the form of a scrollable list. The user can then click on a spe-
cific article in the list and the browser/news reader will obtain the article
contents using the ARTICLE command and display this on the screen.
Normally, each article has the email address of the author, his or her affilia-
tion, and the date the article was posted. A similar procedure is followed to
post an article using the POST command. Normally, the user is prompted by
the news reader for, say, the name of the (local) file containing the article.
The file contents are then sent using NNTP.

The gopher. protocol relates to an Internet application protocol called
Gopher. The Gopher system is similar in principle to the Web inasmuch as it
is a global delivery and retrieval system of documents. In Gopher, however, all

960

Chapter 15 The World Wide Web

15.2.2

items of information are text only. When a user logs on to a Gopher server a
hierarchical menu of files and directories is presented each of which may
have links to the menus on other servers. A user can then access the contents
of a file or directory by clicking on it. The gopher. protocol enables the user of
the browser to do this within a Web page.

The mailto: protocol is provided to enable a user to send an email from
within a Web page. Typically, this facility is initiated by the user entering a URL
with mailio: in the protocol part. This is followed by the email address of the
intended recipient. Normally, the (email) user agent part of the browser
responds by displaying a form containing the other (email) header fields at the
top (to be filled in) and space for the actual message. A facility is then provided
to initiate the sending of the mail which, typically, is sent either SMTP or, if the
email server supports it, HTTP. An example URL is:

magltoyourname@youruntversity.edu

Note that the two forward slashes following the colon are not required with
this protocol.

Universal resource identifiers (URIs)

A limitation of a URL is that it specifies a single host name. In many
instances, however, a Web site may have so many access requests/hits for a
particular document/page that copies of the document must be placed on
multiple hosts. Also, to reduce the level of Internet traffic, each of these hosts
may be geographically distributed arcund the Internet. To enable this to be
implemented, an alternative page identifier called a URI can be specified
with some browsers. Essentially, this is a generic URL since, typically, it con-
tains only the file name. The remaining parts of the URL are determined by
the context in which the URI is given and these are filled in by the browser
itself. We shall given an example of this in the next section when we discuss
cache servers.

HTTP

HTTP is the standard application protocol — also known as a method - that is
used to obtain a Web page and also other items of information relating to a
page such as an image or a segment of audio or video. The earlier version of
HTTP is defined in RFC 1945 and a later version (1.1} in RFC 2068. Itis a
simple request-response protocol: the browser side sends a request message
and the server side returns a response message. Figure 15.2(a) shows the pro-
tocol stack associated with Web browsing, and a selection of the
commands/methods associated with request messages, together with their use,
are shown in part (b) of the figure,

In general, these are self explanatory. Note, however, that the GET
method is used also to, say, obtain an image or segmént of audio ~ shown as a

15.2 URLs and HTTP 961

{a)
Web client
Web server
Web MName server VWeb server
browser) application
process
AP AP]
| : : |
! 3 I
I T I s : : : |
| - o DNS query = . : : I
| E E E esasamsiEsssaasacasnn E E E |
| HE- H DNS response : : : |
' . E HaEARENINITSEAEEEREATEISIANSERERERY E E l
| - HTTP request messages : : |
I . RSN NAEEESSANANASCCEENIRINASEIERIRINANNSARSERERIRIRTRNSVORRARRR E I
I . HTTP response messages : |
i B S LN R RS S A SRR NN ANEEE SRR A AN RN E AR A AN AN AR AR AR AR AR R |
i Global Infernet i
o e b e A G e R M e G G A M e A ML S AN SN B S v o e e e e o
Port X/Y = ephemeral ports Port 53/80 = wellknown port number of DINS/HTTP server
(b)
HTTP Use
GET <lile name= Read o Web page/block of data from the named file
HEAD <file name> Recd the heoder only of the specified Web page
PUT <file nome> Write a Web page or block of data 1o the named file
POST <file nome> Append a Web page/block of data to that in the named file
DELETE <file nome= Delete the named file

Figure 15.2 HTTP principles: (a) protocol stack; (h) a selection of the requests/methods
supported.

962

Chapter 15 The World Wide Web

block of data - from a named file. We shall expand upon this in later sections.
Also, as we shall see in Section 15.3.6, the POST method is used to send the
information entered by a user in e-commerce applications.

The well-known port number of HTTP is port 80. The Web server appli-
cation process (AP) at each Web site continuously listens to this port for an
incoming TCP connection request (SYN) from a Web browser. Note that in a
Unix machine the AP is referred to as a daemon and the HTTP in these
machines is sometimes called HTTPD. When a browser has an HT'TP request
message to send, it initiates the establishment of a new TCP connection to
port 80 on the named server in the URL. It then initiates the sending of the
request message over the established connection and, with earlier versions of
HTTP, after the related response message has been received correctly by the
browser, the server initiates the release of the connection. The TCP connec-
tion associated with this mode of operation is called nonpersistent.

As we can deduce from our earlier discussion of TCP in Section 12.3.2,
the use of a new TCP connection for each request/response message transfer
has a number of disadvantages. First, when accessing a Web page that con-
tains multiple entities within it — an image for example - a time delay is
incurred for each entity that is transferred while a new TCP connection is
established. This is a function of the network round-trip time (RTT) which
can be significant. Second, each new transfer starts with the slow start proce-
dure and hence for a large entity, this can lead to additional delays.

To reduce the effect of these delays, when multiple entities are specified
within a page — and hence to be transferred — many browsers set up a number
of TCP connections so that each entity can be transferred concurrently.
Typically, a browser may establish up to five or even 10 concurrent connec-
tions. However, although this can reduce the overall time delay associated
with a Web access, the use of multiple connections leads to added overheads
at both the client and server sides since both must maintain state information
for each of the connections. This can be particularly significant for a popu-
lar/busy server which may get many hundreds of concurrent requests.

Hence with later versions of HTTP - version 1.1 onwards — unless
informed differently, the server side leaves the initial TCP connection in
place for the duration of the Web session. The TCP connection is then called
persistent and, once in place, the browser may send multiple requests without
waiting for a response to be received. Typically, the end of a session is deter-
mined by a timer expiring when no further transfers over the connection
take place. Note, however, that the different versions of HTTP can interwork
with each other.

Message formats

All HTTP request and response messages are NVT ASCII strings similar to
those used with SMTP. With the earlier versions of HTTP — up to HTTP ver-
sion (.9 — what are called simple request/response messages are used. This means
there is no type information associated with the request message which

15.2 URLsand HTTP | 963

comprises only the method — GET, HEAD, and so on - followed by the
related file name in the form of an ASCII string. The response message is in
the form of a block of ASCII characters with no headers and no MIME exten-
sions. An example of a simple HTTP request message is:

GET/mpeg-4 /index. html

which is sent over the previously established TCP connection to the related
server AP,

With the later versions of HTTP — version 1.0 onwards — MIME exten-
sions are supported using what are called full request/response messages. To
discriminate a full request from a simple request, a field containing the
HTTP version number is added to the request line. This is followed by the
text associated with a number of other RFC 822 headers, each of which is on
a separate line. These were given earlier in Table 14.1 and include:

m general headers: these do not relate to the entity to be transferred and
an example is the MIME version number;

B request headers: these are used to specify such things as the sender’s name/
email address and the media types and encodings that the browser supports;

B entity headers: these relate to the entity to be transferred and include the
content type and, when sending an entity, the content length.

The end of the header is indicated by a blank line. Then, if the request con-
tains a message body, this is followed by the entity being transferred such as a
block of HTML text — a script ~ relating to a page.

The header fields associated with a full response message start with the
HTTP version number followed by the response status code. Some examples are:

200 accepted

304 not modified: the requested page has not been modified
400 bad request

404 not found: requested page does not exist on this server.

This is followed by the name and location of the server and, if the response
contains an entity in the message body, a Content-Type: and a Content-Length:
field. Also, if the contents relate to a binary file, a Content-Transfer-
Encoding:Base64 header field.

An example showing a selection of the header fields associated with a full
request/response message interchange is shown in Figure 15.3. The example
relates to the transfer of the HTML page with the URL of:

hitp:/ fwunv.mpeg.org/mpeg-4 /index. html

Hence prior to sending the GET message, a TCP connection to the server
www, mpeg.org will have been established.

964 | Chapter 15 The World Wide Web

{as} Example request message relafing fo a URL of
http:/ /' vwww.mpeg.org/mpeg-4/index. him!

GET/mpeg-4/index HTML HTTP/ 1.1
Connecticn:close .
Useragent: Browser name/version number
Accept: text/himl, image/gif, imoge/jpeg

(b) Example response messoge relating to this request:

HTTP/ 1.1 200 Accepted

Server: Aname

Location: www.mpeg.org

Subject: MPEG home page
LlastModified: Day,/month/year/time
Content-Type: text/htm|
Contentlength: 7684

Entity body comprising a string
of 7684 NVT ASCIl characters

Figure 15.3 An example of a full request/response message relating to
HTTP: (a) request message; (b) response message.

The meanings of the various fields in the request message shown in part
(a) of the figure are as follows. The Connection: close header line indicates to
the server that the browser does not need a persistent connection. The User-
agent: line contains the name of the browser and its version number. Often
the server contains a number of versions of a page and this enables the server
to send the version that is best suited to the browser. The Aceept: line indicates
the entity types that the browser is able to accept which, as we can see, is
determined by the compression software/hardware it supports.

The meanings of the various header fields in the response message
shown in part (b) are mainly self explanatory. In the example, the body con-
tains an entity comprising a string of NVT ASCII characters representing the
HTML text of a Web page. Alternatively, if the Content-Type: was, say,
image/jpeg then a Content-Type-Encoding: Base64 header field would be present.
For a more complete list of the MIME headers you should refer back to Table
14.1 and Figuic 14.9 and their accompanying text.

Conditional GET

As we saw earlier in Figure 5.16(b), in many instances a browser does not
communicate directly with the required server but rather through an inter-
mediate system called a proxy server. In the figure it was assumed that the
browsers at a site supported only the HTTP protocol and that the proxy
server was used to access the contents of files using different protocols such

15.2 URLsand HTTP | 965

as FTP and NNTP. As we can deduce from our discussion of URLs, this will
avoid each of the browsers having the code of each of these protocols. In
addition, however, a proxy server normally caches the Web pages and other
entities that it obtains - on behalf of the browsers that it serves — on hard
disk. Then, when a browser makes a request for a page/entity that the proxy
server has cached, the proxy server can return this directly without going
back to the server holding the original source. The latter is called the origin
server and, when it performs this function, the proxy server is also known as
a (Web) cache server.

Although caching reduces the response time for subsequent requests for
a cached page/entity, there is a possibility that the cached entity may be out
of date as a result of the original being modified/updated subsequent to the
cache server receiving it. Hence because caching is widely used, an additional
request message called a conditional GET is used by the cache server to
ensure the response messages that are returned to the browsers contain up-
to-date information.

A conditional GET request message is one which includes a header line
of If-Modified-Since: and its use is illustrated in Figure 15.4. To avoid duplica-
tion, the header fields that have already been discussed are left out of the
messages shown. The following should be noted when interpreting the mes-
sage sequence,

B It is assumed that the browsers in all the client machines attached to the
access network — site/campus LAN, ISP network, and so on - have been
configured to send all request messages to the proxy/cache server.

B The sequence starts with a browser requesting an HTML page from the
proxy server using a GET request message (1),

GET/mpeg-4,/HTTP/1.1
GET/mpeg-4/HTTP/1) If_Meadified_Since: day, date, time

{) : - {]
(4] — 13}
Access network Global Internet
[site/campus LAN efc |

HTTP/ 1.1 200 Accepted HTTP/ 1.} 304 Net Modified
ContentType: text/htm| {Emply entity body]
[requested HTML page

in entity body

Figure 15.4 Proxy/cache server operation with conditional GET.

966

Chapter 15 The World Wide Web

15.3

B The proxy server has a cached copy of the page and, associated with it,
the day/date/time when the page was cached. This is obtained from the
Last-Modified: header field in the response message returned by the
origin server to an earlier request.

B Before returning the cached page to the browser, the proxy server sends
a conditional GET request message to the origin server - defined in the
page URL. — with the date and time the current copy of the page it hoids
was last modified in the IfModified-Since: header field (2).

B On receipt of this, the origin server checks to see if the requested page
has been modified since the date in the IfModified-Since: field.

B In the figure it is assumed that the contents have not been changed and
hence the origin server returns a simple response message with a status
code of 304 Not modified in the header and an empty entity body (3).

B On receipt of this, the proxy server returns a copy of the cached page to
the browser (4).

In the event that the requested page/entity had been changed, then a
copy of the new page/entity would be returned by the origin server. A copy of
the new page would then be cached by the proxy server — together with the
date and time from the Last-Modified: field — before it is forwarded to the
browser. Thus the savings obtained with a cache server come from the
absence of an entity body in the response message from the origin server.
Clearly for large pages/entities this can be considerable. In addition, further
savings can be obtained by also having a higher-level cache server associated
with, for example, each regional/national network. The proxy server associ-
ated with each access network is then configured to send all request messages
to a specified higherlevel cache server. In general, the higher the level this is
in the Internet hierarchy the more requests it will receive and, as a resuit, the
more cached pages/entities it holds.

HTML

The Hyper Text Markup Language, HTML, is the standard language used to
write Web pages. As we saw in Section 2.3.3, HTML is the markup language
that is used to describe how the contents of a document/page are to be dis-
played on the screen of the computer by the browser. Moreover, since the
markup commands relate to a complete page, the browser automatically dis-
plays the page contents within the bounds allocated for the page; that is,
irrespective of whether this is a small window on a low resolution screen or a
large window on a high-resolution screen.

The markup/format commands are known as directives in HTML and
the majority are specified using a pair of tags. In addition to the various types
of directive associated with a string of text — which specify how the string is to

15.3.1

15.3 HTML | 967

be presented on the display — there are tags to enable a hyperlink to be speci-
fied as well as tags to specify an image or a segment of audio or video within a
page and how these are to be displayed/output. There are also fill-in forms
and other features. In this section we describe how each of these features is
specified in HTML. It should be stressed, however, that HTML is continu-
ously being revised and what follows should be considered only as an
introduction to the subject.

Text format directives

The HTML text associated with a Web page is written in the ISO 8859-1
Eatin-1 character set which, for the English alphabet, is the same as the ASCII
character set. However, for someone creating Web pages in a Latin alphabet,
when using an ASCII keyboard, escape sequences must be used. For example,
the Latin character ¢ is represented by the ASCII string è and é by
Geacute.

The HTML text can be entered using either a word processor with facili-
ties for creating and editing an HTML document/page or directly using the
facilities provided by a Web browser. Typically, the complete string of charac-
ters consists of a number of substrings each of which may be displayed in a
different format when the substring is output on the display by the HTML
parser/interpreter part of the browser. In order for the interpreter to do this,
each substring is sandwiched between a pair of tags that specify the format
directive to be used. For example, if the substring

this is easy
is to be displayed in boldface, then this is written as
 this is easy </ B>

As we can see, the opening tag comprises the format directive (B) between
the pair of characters < and > and the closing tag is the same directive
between </ and >. Note that the directive itself is case insensitive but nor-
mally upper-case is used to make the directives casier to identify. This format
is used for a majority of the tags and a selection are listed in Table 15.1.

An example of an HTML script that includes some of these tags is shown
in Figure 15.5(b). The example relates to the simple Web page we showed
earlier in Figure 2.9 excluding at this stage the university crest. Typically,
since this is the home page of the UoW, its URL would be:

hiip:www. UoWedu

The start of a page is indicated in the script by a <HTML> tag and the
end of the page by a </HTML> tag. The <HTML> tag is followed by the page

968

Chapter 15 The World Wide Web

Table 15.1 A selection of the HTML text format directive/tags.

Closing tag

header which is entered between the <HEAD> and </HEAD> tags. Primarily,
the header contains the title of the page which is written between the
<TITLE> and </TITLE> tags. Note that the title is not output as part of the
displayed page. In some instances, however, it is output by the browser in a
field at the top or bottom of the display. The displayed page contents are
then entered between the <BODY> and </BODY> tags.

In the example, there is only one heading and this is written between the
<HI> and </HI> tags. If there were some subheadings, they would each be
defined in the place they are to be displayed using the format:

<H2> Subheading name </H2>
Note, however, that it is the browser that decides the relative size of each

heading/subheading on the display screen. Normally, they are in decreasing
size with the first-level heading <H1> displayed in the largest font size and,

15.3 HTML | 969

(e}
{b) <HTML>
<HEAD>
<TITLE> U of W Prospecius </ TTLE>
</HEAD>
<BODY

<H1> UNIVERSITY OF WONDERLAND </H1>

 Welcome 1o the University of Wonderland, simply click on one of the
following o find cut more about:
<UL The University
<ll> Academic depariments
<ll> Research
 Admissions </Ax>

</BODY>
</HTM[>

Figure 15.5 HTML text format directives: (a) example Weh page;
{b) the HTML script for the page.

typically, in boldface with one or more blank lines above and below it. Each
level of subheading is then displayed in a decreasing size.

The
 is used to ensure that the welcome message starts on a new
line. This is followed by an unordered (bulleted) list of items. These are listed
between the and tags with each item starting with a single
tag. The default for the start of the items in a first-level list is a solid bullet. In
the example, each bulleted item is a hyperlink to a different page and hence
starts with the tag where A stands for anchor. This is fol-
lowed by the textual name of the hyperlink — for example, The University —
that is to appear on the display screen. Also, since this is a hyperlink name,
the HTML interpreter displays it highlighted using, for example, an under-
line — as shown - or, if colored text is being used, a different color. Then,

970

Chapter 15 The World Wide Web

15.3.2

when this is clicked on, the interpreter uses the URL to fetch the related fite.
The end of a hyperlink is indicated by the tag.

Note that since the prospectus consists of a linked set of pages, all of
which are stored at the same site /server, once the full URL of the home page
has been given, any links in the remaining linked set of pages can each use a
relative URL. This means that the file names used in these URLs are assumed
to have the same protocol/method and site/server domain name as that of
the home page; that is, in the example, the browser assumes that each is pre-
ceded by:

htp:wurw. UoW. edu/

For this reason, therefore, the URL of the home page is said to be an
absolute URL. Hence as we can deduce from this example, by using relative
URLs in all the remaining linked set of pages, it is then straightforward to
relocate them by changing only the (absolute) URL of the home page.

In this example, the page containing the top-level index is relatively short
and so fits into the display window. Also, it was assumed that further details
relating to each of the listed headings were on a different page and accessed
by an external link. However, if the index were larger and could not be dis-
played in a single window, then the user would have to scroli the page to find
the remainder of the index. Alternatively, if the page/index is particularly
long, it is sometimes preferable to have internal links within the page.

For example, if the second-level subheadings relating to each first-level
heading shown in the example in Figure 2.9 were all on the same page, then
the link associated with each first-level heading would be an internal link.
These are specified using the format:

<A HREF "#University">The University

The words The University would then be displayed highlighted and, if the user
clicks on this, the parser would jump to the point in the current page where
the words The University next occur and start to display from this point in the
page. The related subheadings could then be either internal links if further
subheadings are defined or, if not, external links to the pages where the
actual descriptions are located.

Lists

The example shown in Figure 15.5(b) contained a single unordered list.
In addition, an ordered {(numbered) list can be used as well as nested lists
of different types. An example of an HTML script that illustrates these fea-
tures is shown in Figure 15.6(b) and the resulting displayed page is shown
in part (a).

As we can see, the listed items appear in the HTML script in the order
they are to be displayed. The format directives associated with each item then
enable the HTML interpreter in the browser to determine the position of

15.3 HTML | 971

(a)

{b} <HIML>
<HEAD><TITLE> Lists </TITlE></HEAD>
<BODY>
<ll> Multimedia Communications
 <Ll> Appiications

<l> Networks
<ll» Protocols

<ll> Compression
 <ll> Audio
<li=PCM
<lI=Video
MPEG< /UL>

</BODY></HTML>

Figure 15.6 Lists in HTML: (a) example of displayed page; (b} HTML
script for this page.

each item in relation to the others. Note that the default for an ordered list is
a numeric value but it is also possible to define a number of alternatives. This

is done by adding the required type to the opening tag:
<OL TYPE=X>

where X is the type of numbering. For example, X =i selects lowercase roman
numerals (i, i, and so on). It is also possible for a user to define the number

he or she wants by using

<QOL><LI VALUE=Y>

972

Chapter 15 The World Wide Web

15.3.3

where Y indicates the number. Note that the defaulc for the start of the items
in a second-level unordered list is a hollow bullet and that it is the browser
that determines the level of indentation.

Color

Color is used in a number of ways by browsers to enhance a displayed page.
For example, hyperlinks are often highlighted in the color blue and, when a
hyperlink has been selected, normally the color changes from blue to purple.
In addition to these colors, however, most browsers allow the user to specify
their own color for the background color (BGCOLOR), the text (TEXT), a
hyperlink (LINK}), and a visited link (VLINK) as part of the <BODY> tag at
the head of the HTML script.

The way a color is defined in HTML is determined by the number of bits
used to represent each color on the display of the machine the browser is
running. As we saw in Table 2.1, this can range from 8 bits through to 24 bits.
Normally, each 8 bits is represented by two hexacimal digits and hence each
alternative color to be used is specified using either two (8 bits), four (16
bits), or six (24 bits) hexadecimal digits. For example, if 24 bits are used for
each color, normally, the three sets of 8 bits represent the strength of each of
the three primary colors (red, green, and blue) the color contains. The
format used to represent the color is then:

#RRGGBB

where RR are the two hexadecimal digits that represent the strength of the
color red, GG the color green, and BB the color blue. Hence the three pri-
mary colors are represented as:

#FF0000 = red, #00FF00 = green, #0000FF = blue
Some other examples are:
#FFFFFF = white, #FCEH(3 = yellow, #F1AG60A = orange, #000000 = black

Hence if, for example, the background color is to be blue, the text is to be
yellow, a hyperlink orange, and a visited hyperlink green, these would be
specified as:

<BODY BGCOLOR = "#0000FF” TEXT = "#FCE503" LINK = "#F1A60A"
VLINK = “#00FF00">

Note, however, that most browsers use a color look-up table (CLUT)
which displays only a defined set of 256 colors. Also, a number of these are
reserved for the browser’s own use. Hence although in theory a vast range of

15.3.4

15.3 HTML | 973

colors can be defined, in practice most browsers will simply approximate
most of them to the nearest color-match in the usable colors in their CLUT.
Typically, the usable colors that are available consist of any combination of
the hexadecimal pairs:

00 33 66 99 CC FF

Hence when defining colors, if these hexadecimal pairs are used then the
colors will be displayed in their unmodified form.

Images and lines

Images can be used both as an alternative to a white background for a page
and for displaying a specific object within the page itself. Although the image
can be in any format, most browsers support only GIF and JPEG images; that
is, they only have the software to decompress an image held in either a gif or
Jpegfile. Horizontal lines in various forms can also be displayed on a page. We
shall outline each feature separately.

Background images

In order to specify an alternative background image for a page, the file con-
taining the image - for example bgimage.gif — is specified as part of the
<BODY> tag using the format:

<BODY BACKGROUND = "bgimage.gif ">

For example, most Web browsers have a file called clouds.gif which is often
accessed and used as an alternative background. When the parser encounters
this, the interpreter first obtains the contents of the file and, after this has
been decompressed, displays this on the screen as the background. The page
contents are then superimposed on it.

Images

An image that is displayed from within a page is specified at the point in the
HTML script —~ that is, relative to the other markup directives in the script -
where the image is to be displayed using the tag

where file name is the name of the file containing the image on the current
page server. For example, assuming the file name containing the logo/crest
of the UoW shown on the Web page in Figure 2.9 is crest. jpeg, this could be
displayed on the page by replacing the first line in the body of the HTML
script shown earlier in Figure 15.5(b) with

 <H1> UNIVERSITY OF
WONDERLAND</H1>

974

Chapter 15 The World Wide Web

Note, however, that some later versions of HTML may use the tag <OBJECT>
to include an image where <OBJECT> applies not only to images but also to
a number of other data items/objects. We shall expand on this later in
Section 15.5.1.

Using the above method it is the browser that ultimately decides on the
size and the position of the image. Hence it is possible that the heading will
be displayed below the logo/crest with the above script. In addition, however,
a number of optional attributes — also called parameters ~ can be defined
with the IMG tag to inform the browser of the required position and other
attributes. These include the ALT and the ALIGN attributes. The ALT
attribute is used to specify a text string that should be displayed if the browser
is not able to display an image. For example,

could be used to display the words UsW erest instead of the actual crest/logo
if, for example, the user has disabled images or the related decompression
software is not supported.

The ALIGN attribute is used to align an image with respect to either the
display window or to some displayed text. In the first case, the related image
can be displayed aligned to the LEFT window edge, which is the default, in
the CENTER of the page, or aligned with the RIGHT edge. An example
showing a segment of an HTML script to align an image in the center of the
page is shown in Figure 15.7(a).

An image can also be aligned with respect to some given text. In this case
the text following an IMG tag can start at various specified points relative to
the image. For example, the text can start on the first line at the TOP of the
image, the MIDDLE, or the BOTTOM. A segment of HTML script showing
how the text starts at the middle of the image is shown in Figure 15.7(b).

Normally, before displaying any text that comes after a specified image,
the browser waits until it receives the complete image to determine the
amount of display space the image needs. For a large image this can delay the
display of the complete page. To overcome this (and speed up the display
process) the size of the image can be included with the image specification.
Also, the size of the margin that should be left around the image. With this
information the browser is able to reserve the requisite amount of display
space and, while the image is being transferred and displayed, output any
remaining text. The format used to do this is:

<IMG WIDTH = "x" HEIGHT = "y" HSPACE = "a" VSPACE ="b"
SRC = "image.gif ">

where x, v, a, and b are all specified in screen pixels. Note, however, that by
specifying the dimensions in pixels the size of the displayed image will
depend on the pixel resolution of the display. An image can also be used as a
hyperlink by including the image specification within the hyperlink tags:

15.3 HTML | 975

{a)
<BODY>
<H1>UNIVERSITY OF WOMNDERLAND</H 1>

 Welcome to the — - —
.
L]
</BCDY>
{b)

<BODY>

L 3
[3
[]

 This text starfs at the center of the image and

confinues until it can start at the left window edge.
L]
L]
.

</BODY>

Figure 15.7 Aligning in-line images: (a) with respect to the display
screen; (b) with respect to subsequent text.

The displayed image image.gif will then be displayed highlighted and the user
can click on any part of this to activate the hyperlink.

976 | Chapter 15 The World Wide Web

Lines

A horizontal line - referred to as a rule - can be displayed from within a page
using the <HR> tag. The thickness, length, and position of the line/rule can
be varied by using attributes. These include:

@ SIZE =s: defines the thickness of the line as 2 multiple of the default
thickness;

m WIDTH = w: defines the length of the line as a percentage of the width of
the display window;

B ALIGN =y: defines whether the line is aligned to the left, center, or right
of the display window.

An example showing a selection of displayed lines and the related fragment
of HTML script is given in Figure 15.8.

{a)

{b)

<HR WIDTH = 50% AUGN = CENTER>
L]
L]
L]

<HR SIZE = 5 WIDTH = 75% AlUGN = RIGHT>

</BODY>

Figure 15.8 Horizontal lines: (a) a selection of displayed lines;
(b) associated fragments of HTML.

15.3 HTML | 977

15.3.5 Tables

Tables can be used in Web pages not only to display a particular set of data in tab--
ular form but also to control the overall layout of a page. A table consists of one
or more rows and one or more columns. The intersection of each row and
column is called a cell and a cell can contain a string of text, 2 number, an image,
a hyperlink or, if required, another table. Each column can have a heading and,
if required, a heading can span multiple columns. A selection of the tags that can
be used to create a table are shown in Figure 15.9(a), an example of a displayed
table in part (b) of the figure, and the HTML script relating to this in part (c).

As we can see, both the headings and the contents of each cell are defined a
row at a time starting at the left column using the <TH> and <TD> tags respec-
tively. Note that, normally, the column headings are displayed in boldface by the
browser and that the <CAPTION> tag is defined within the pair of <TABLE>
tags. Also, as we can deduce from this example, an unboxed table can be used to
control the layout of a page by dividing the page into regions/cells.

(a)

Opening tag Closing tag Use
<TABLE> </TABLE> Start and end of an unboxed table
<TABLE BORDER> </TABLE> Start and end of a boxed table
<TR> </TR> Siart and end of a row
<TH> </TH> Start and end of a heading
<TD> </TD=> Stast and end of o cell content
<CAPTION> </CAPTION> Start and end of a toble caption
() NETWORK | CO/CLS | CBR/VBR
PSTN/ISDN co cbr
LAN clis vbr
AT co vbr
internet cls vbr

Network operating modes

{¢) <HTMi><HEAD><TITLE> Example table</TITLE></HEAD>
<BODY>
<TABLE BORDER ALGN = CENTER>
<TR><TH>NETWORK</TH><TH>CO/Cl3</ TH><TH>CBR/YBR</TH></TR>
<TR><TD>PSTN/ISDN</TD><TD> co </TD><1D> cbr </T0></TR>
<TRo><TD>LAN</TD><TD> cls </TD><TD vbr </TD></TR>
<TR><TD>ATMe</TD><TD> co </TD><TD vbr </ TO></TR>
<TR><TD> Internet </T0><TD> cls </TD><TD> vbr </TD></TR>
<CAPTION> Network operating modes </CAPTION>
</TABLE>
</BODY></HTML>

Figure 15.9 HTML tables: (a) selection of tags; (b) an example of a
displayed tahle; (c) HTML script for the table.

978

Chapter 15 The World Wide Web

15.3.6

The position of the table on the display and the size of each cell is deter-
mined by the browser based on the maximum length of either the heading or
the contents of each cell in a column and the number of rows. The contents
of each heading and cell are then centered within the cell. Alternatively, the
ALIGN attribute can be used with the <TABLE>, <TH>, and <TD> tags to
align the table/heading/cell contents either to the left edge of the
display/cell, the right edge, or the center. Two examples showing the format
used are:

<TABLE BORDER ALIGN = CENTER>
<TH ALIGN = LEFT>

In addition, a user can define the size of the table themselves by specifying
either the number of pixels to be used or as a percentage of the actual table
size relative to the size of the display window. The format used is:

<TABLE BORDER WIDTH = 50% LENGTH = 50%>

Also, the size of individual cells can be defined by adding attributes to the
<TH> and <TD> tags. Some examples are:

<TH ROWSPAN = 2> <!- -> the depth of the heading should be 2 rows - >
<TD COLSPAN = 3> <!--> the cell should span 3 columns - >

Forms and CGI scripts

The previous subsections have been concerned with how a selection of the
HTML directives/tags associated with text, images, and tables can be used to
specify the contents of a Web page, and how the page is displayed on the
screen of a client machine by the browser. However, as we saw in Section
5.4.2, in applications relating to e-commerce, for example, in addition to the
server returning the contents of a file/page that have been requested by a
browser, it is also a requirement for the server to receive and process informa-
tion that has been input by the user. For example, payment card details and
other information relating to the purchase of a ticket or product. As we saw,
this is entered by means of a fill-in form and, typically, the entered informa-
tion is then sent back to the server where it is processed by a piece of software
called a common gateway interface (CGI) script. In this section we expand
upon both these topics.

Forms

A form provides the means for the browser to get input from a user. A form is
declared within an HTML page between the <FORM> and </FORM> tags. In
addition, the <FORM> tag has two mandatory attributes, ACTION and
METHOD. The ACTION attribute specifies the URL of the server where the

15.3 HTML | 979

data entered by the user should be sent and includes the path name and the
name of the file containing the CGI script that will process the data. The
METHOD attribute specifies how the entered data should be sent. When
using HTTP it is always set to POST which means that the data will be sent
using a POST request message over a previously established TCP connection
between the browser and the named server. An example showing the format
used is:

<FORM ACTION = "http://company.com/cgi-bin/orderform1”
METHOD = POST>

A form can contain a number of alternative ways for obtaining input
from a user. These include fill-in boxes for textual input and check-boxes or
pull-down menus for making selections. Then, when the user has completed
filling in the form, the user can either initiate the sending of the entered
information to the named server (if all is well) or, if not, reset the form to its
initial state and start again.

When creating a form ~ normally within a page - to obtain input from a
user, the <INPUT> tag is used. There is a range of attributes associated with
the tag which determine how the information is to be obtained. A selection
of these are as follows:

<INPUT TYPE = TEXT NAME = "aname” Size = "n" >: this is used to
create a fill-in box of length n characters. The entered text is given an
identifier of the value in NAME, that is, aname;

B <TEXTAREA NAME = "aname" ROWS = "m" COLS = "n">
</TEXTAREA>: this is similar to the previous type except that the filkin
box comprises m rows each of length n characters. Normally, the box has
a scroll bar for more than 2 rows;

8 <INPUT TYPE = PASSWORD NAME = "aname" SIZE = "n">: this is similar
to TEXT except that the entered password is displayed on the screen of the
browser as a string of * characters, one per entered character;

m <INPUT TYPE = CHECKBOX NAME = "aname" VALUE = "avalue">: this
is used to select a single option from a list of options of which the user
can select more than one. All the options in the list have the same NAME
("aname") but each option has a unique VALUE;

® <INPUT TYPE = RADIO NAME = "aname” VALUE = "avalue">: this is the
same as CHECKBOX except that the user can select only one from the list;

B <INPUT TYPE = SUBMIT VALUE = "aname">: this is used to create a
submit button with the name given in the VALUE attribute displayed on
the face of the button. When selected, this causes the browser to send the
set of data entered by the user to the server;

m <INPUT TYPE = RESET VALUE = "aname">: this is used to create a reset
button with the name given in the VALUE attribute displayed on the face

980

Chapter 15 The World Wide Web

of the button. When selected, this causes the browser to reset the form to
its initial state;

m <INPUT TYPE = BUTTON VALUE = "aname">; this is used to create
additional buttons each of which can have a script associated with it that
is invoked when the button is activated.

An example of a displayed form that has been created using a selection of the
abagve js shown in Figure 15.10(a) and the HTML script associated with this is
given in part (b). Note that if no TYPE is specified it is assumed that the
INPUT is plain text,

Once the user activates the SUBMIT button — given the label Submit
request in the example — this causes the browser to send the set of data entered
by the user to the CGI script/program in the server named in the URL of the
ACTION attribute. The data is sent in a POST request message containing
the name of each variable followed by an = character and the value entered
by the user. Note, however, that only those variables that have an entered
value are sent. Fach variable name and its associated value is separated by an
& character and any spaces in the entered value are replaced by a + character.
For example, assuming the displayed form shown in Figure 15.10(a), an
entered set of data might comprise the block of characters:

name=FirstName+Surname&address=AStreet+ATown+ACountry
&phoneno=888-99999&Prod Type=modems&ProdType=hubs&
PurchDate=now

with no spaces between the characters. Hence assuming the URL shown in
part (b), the HTTP in the browser first establishes a TCP connection to port
80 — the HTTP well-known port - in server wuwuw.NetCo.com. The block of char-
acters is then sent over this connection using a POST request message with a
file name of /egi-bin/literature and

Content-Type: text/himl
Content-Length: [15

in the message header. This is followed by a blank line and the block of 115
characters in the message body.

Normally, on receipt of a POST request message with a directory name of
¢gi-bin the HTTP in the server invokes the CGI script/program in the named
file and passes the contents of the request message to it for processing. The
CGI script, after processing the contents of the POST message, may then
return in the POST response message that it returns to the HTTP in the
browser. a message such as that shown at the bottom of the display in the
figure or, if some information is missing, a request to fill in the form again.
Alternatively, it might return a Web page containing descriptions of the
selected products.

153 HTML | 981

(ﬂ) 2 S == > e——— i

l Submit request

{b) <HTMi><HEAD><TITLE: Literature Request </TITIE >< /HEAD=
<BCDY>
<H 1> THE NETWORKING COMPANY «/H1>
<FORM ACTION = "hitp: / /vwwnw NetCo.com/cgibin /literature” METHOD = POST>
Thank you for your enquiry. Plecse enter your: <P»
Name: <INPUT NAME -: "name” SIZE = 30> <P>
Address: <TEXTAREA NAME = "address” ROWS = 3 COLS = 40> «</TEXTAREA>
Phone number: <INPUT NAME = "phoneno” SIZE = 20><P>
Plecse check product types you are interested in: <P>
Medems <INPUT TYPE = CHECKBOX NAME = "ProdType” VALUE = "modems”>
Hubs <iNPUT TYPE = CHECKBOX NAME = "ProdType’ VALUE = "hubs">
Bridges <INPUT TYPE = CHECKBOX NAME = "ProdType’ VALUE = 'bridges'><P»>
Please indicate when you might purchase the above: <P>
immediately <INPUT TYPE = RADIC NAME = "PurchDate” VALUE = "now'>
Near future <INPUT TYPE = RADIO NAME = "PurchDate” VALUE = 'later"><P>
<INPUT TYPE = SUBMIT VALUE = "Submit Request™>
<INPUT TYPE = RESET VALUE = "Start Agoin"><P>
< /FORM>< /BODY></HTML>

Figure 15.10 HTML forms: (a) an example of a displayed form;
{b) HTML script for the form.

An alternative way of selecting an item from a list of options is in the
form.of a pull-down menu. A menu is created by defining each option
between the <SELECT> and </SELECT> tags. Associated with the opening
<SELECT> tag is a NAME attribute which is assigned the name of the list of
options. Also, if more than one option can be selected, a MULTIPLE
auribute. An example showing how the two list of options in the example in

982

Chapter 15 The World Wide Web

Figure 15.10 could be displayed in the form of pull-down menus is shown in
Figure 15.11(a) and the HTML script for this is given in part (b).

As we can see, since more than one option can be selected from the first
menu, the MULTIPLE attribute is included. We can also see that the
SELECTED attribute is used with one of the <OPTION> tags to show a
default selection at start-up. The option selected with PurchDate is then sent in
the form (say):

&PurchDate = Immediately

(v)

Please select product types you ore inferested in: <P>
<SELECT NAME = "ProdType” MULTIPLE>
<OPTIONS "Modems"

<OPION SELECTED> "Hubs"

<QPTIONz *Bridges’

</SEIECT><P>

Please selecs when you might purchase the above:
<SELECT NAME = "PurchDate™

<OPTION SELECTED> "Immediately”

<OPTION> "Nearfuture”

</SELECT><P>

[]

Figure 15.11 HTML pull-down menus: (a) two examples; (b) HTML script.

15.3.7

15.3.8

15.3 HTML | 983

Web mail

In addition to a user communicating with an email server — to send and receive
mail messages — using an (email) user agent and, say, the POP3 protocol, it is
also possible for a user to communicate with an (HTTP-enabled) email server
using a Web browser and HTTP. In this case, the browser performs the user
agent functions and all message transfers between the browser machine and
the user’s email server are carried out using HTTP rather than POP3.

As we saw in Section 14.3, a protocol like POP3 is used to transfer mes-
sages to/from the user agent and the user’s email server over a point-to-point
link. Using a browser and HTTF, however, has the advantage that, since any

“browser can be used to access a (registered) user’s email server, the browser

can be located anywhere around the world. The disadvantage is that access-
ing and sending mail in this way can be relatively slow. As we saw in the last
section, since information — an entered email message in HTML for example
— must be returned by the browser to the server, then all interactions with the
email server must be through the intermediary of a form and an associated
CGI script. In general, therefore, if a conventional email user agent can be
used, this is the preferred choice when the user is working at his or her home
or place of work. A Web browser is used when the user is away from home. In
both cases, however, all message transfers between the email servers involved
are carried out using SMTP.

Frames

Frames are used to enable the user to display and interact with more than
one page on the display window of the browser at the same time. This is
achieved by dividing the display window into multiple self-contained areas.
Each area is called a frame and a separate page can be displayed in each
frame. The user is able to interact with the page displayed in one frame while
the pages in each of the other frames remain unchanged on the screen.

To divide the display window into multiple frames the start and end tags
<FRAMESET> and </FRAMESET> are used. Associated with the <FRAME-
SET> tag are two attributes: COLS, which is used to divide the display
vertically, and ROWS which is used to divide the display horizontally. For
example, to divide the display vertically into two frames of equal size the fol-
lowing definition is used:

<FRAMESET COLS = "50%,50%">

It is then possible to subdivide one or both of these frames using the ROWS
attribute. For example, the left frame can be divided by following the previ-
ous definition with:

<FRAMESET ROWS = "70%,30%">

984

Chapter 15 The World Wide Web

Once the display has been divided into the required number of frames
(each of a defined size), the URL (or local file name) of the page to be dis-
played in each frame is defined using the SRC attribute in a <FRAME> tag.
The HTML script of the page to be displayed in each frame is defined inde-
pendently in the standard format (using all of the previously described
features) and is stored in the related URL or local file name. Two example
structures are shown in Figure 15.12(a) and the HTML script associated with
each structure in part (b). Note that the <FRAMESET> tag effectively
replaces the <BODY> tag when frames are being used.

In these two examples, any images and/or hyperlinks in the displayed
pages are accessed by the browser in the standard way and displayed in the
frame displaying the related page. In addition, it is possible for a hyperlink in
a page displayed in one frame to be used to access and display a page in one
of the other frames. To do this it is necessary to give a name .o the frame that
is to be used to display the page when the frame is defined; for example, left,
right, and so on. This is done using the NAME attribute with the <FRAME>
tag. The same name is then added to the URL (or local file name) of the
page that is to be displayed in this frame using the TARGET attribute. An
example illustrating this feature is shown in Figure 15.13(a) with the HTML
script in part (b) of the figure.

The example relates to that shown earlier in Figure 15.5 and the modifi-
cations that are necessary to the HTML script shown in Figure 15.5(b) to
display the home page in the left frame and the selected pages from this in

(a) (i) {ii)

(b} (i) <HTML><HEAD=<TITIE>Frames1</TITIE></HEAD>
<FRAMESET COLS = "50%, 50%">
<FRAMESET ROWS = "50%, 50%">
<FRAME SRC = "URL/kocal file name of the page tc be displayed in the lopleft frame’>
<FRAME SRC = "URL/local file name of the page to be displayed in the bottom-left frame”>
<FRAME SRC = "URL/local file name of the page to be displayed in the right frame”>
</FRAMESET></HTML>

(i) <HTML><HEAD><TITLE>Frames2</TITE></HEAD>
<FRAMESET COLS = "50%, 50%">
<FRAME SRC = "UR{/lccal file name of the page to be displayed in the left frome'>
<FRAMESET ROWS = "50%, 50%">
<FRAME SRC = "URL/local file name of the page to be displayed in the topright frame™>
<FRAME SRC = "URL/local file name of the page to be disployed in the bottom-right frame">
</ FRAMESET>< /HTML>

Figure 15.12 HTML frames: (a) two example frame divisions; (b) order
of the related HTML scripts.

15.3 HTML | 985

{a)

(b) <HTMI><HEAD><TITIE:> Frames2 </TITIE></HEAD>
<FRAMESET COLS = "35%, 65%">
<FRAME SRC = "http:/ /www.UoW.edu">
<FRAME SRC = "university" NAME = "right>
</FRAMESET></HTML>

(<) .

<Ui><ll> The University
.
[]

 Admissions
L]
[]

Figure 15.13 Nested frames: (a) example display composed of two
vertical frames; {b) HTML script for the display; {c) modifications to
the HTML script shown earlier in Figure 15.5(h).

the right frame are given in Figure 15.13(c). As we can see, for the frame on
the right we have given it an initial URL of The University and a NAME =
"right". Also, in order for the browser to know to display all the subsequently
accessed pages in the right frame, each URL has an added attribute of
TARGET = "right".

In addition to dividing the display window into multiple fixed-sized
frames, it is also possible to display a second page in another frame that is
defined in the HTML script of the currently displayed page. The second

986

Chapter 15 The World Wide Web

frame is called an in-line frame as it is created by inserting an <IFRAME> tag in
the place in the current page where the frame is to be created. The <IFRAME>
tag has a number of attributes which include SRC to specify the URL (or local
file name) of the page to be displayed in the second frame, WIDTH and
HEIGHT to define the size of the second frame, and FRAMEBORDER to indi-
cate whether the frame should have a border (=1) or not (=0). An example is
shown in Figure 15.14(a) and the HTML script for this in part (b).

As we can see, in this example the in-line frame is used to display the con-
tents of a second paper that is referenced in the first paper. In this way, if the
reader of the first paper is not familiar with the referenced paper then he or
she can read it through the inline frame.

(a}

(b) <HIMI><HEAD><TITIE> Indine fromes </TITLE>< /HEAD>
<BODY>
<H 1> FIRST RESEARCH PAPER </H1><P>

This paper builds on the research reported in Authar {2000] <P>
<IFRAME SRC =" URL of page Author [2000)" WIDTH = 600" HEIGHT = "200"
FRAMEBCRDER = "!"></IFRAME><P>
The paper is divided into five sections. After the intreduction in section 1, in section 2 the
operaticn of VoIF networks are explained and...
L]

Figure 15.14 In-line frames: (a) a segment of a displayed page
containing an in-line frame; (b) a segment of the HTML script to
produce this.

15.4 Audio and video | 987

15.4 Audio and video

With Web pages comprising text and/or images, the contents of the file contain-
ing the page are downloaded from the server to the client machine. The browser
then displays the page contents on the screen and, in the case of a large
file/page, the user can use the scrolling facilities to view the whole page.

In the case of audio and video, however, the volume of information to be
transferred increases linearly with time and hence is determined by the duration
of the audio/video clip. As we saw in Chapter 4, typical bit rates for compressed
audio - for example MPEG layer 3 (MP3) - are 128kbps for twochannel stereo
and 1.5Mbps for MPEG-1 video with sound. Hence even a short audio/video clip
can require a significant time to download. For example, a 5 minute audio
clip/track compressed using MP3 produces 5 x 60 x 128 x 103 bits or 38.4 Mbits.
Even with a relatively high access rate of, say, 1 Mbps this requires 38.4s to down-
load which, for this type of application, may not be acceptable. For video, of
course, the delay would be an order of magnitude larger.

Hence when a user requests a file containing (compressed) audio and/or
video, except for relatively short files containing spoken messages and short
audio and/or video clips, the contents of the file must be played out as they
are being received. As we saw in Section 1.5.1, this mode of working is called
streaming. Also, as we saw in Section 1.5.6, to overcome variations in the time
between each received packet in the stream - jitter — normally a playout
buffer is used. This operates using a first-in first-out (FIFO) discipline and
typically, holds several seconds of audio and/or video. The received com-
pressed bitstream is then passed through the buffer and output from the
buffer does not start until the buffer is, say, half full.

Each of these functions is in addition, of course, to the decompression of the
audio and/or video bitstream. To perform these various functions the browser
uses a range of helper applications. Normally, these are referred to as media play-
ers as they form the interface between the incoming compressed media
bitstream and the related sound and/or video output card(s). In the case of
audio, the appropriate audio media player — MP3 for example — decompresses
the audio bitstream taken from the playout buffer and passes it to the sound
card. The latter first converts the decompressed bitstream(s) back into an analog
signal(s) and, after amplification, the signal(s) is/are output to the speakers. For
video, the browser first creates a window in the Web page from where the request
was initiated and then passes the coordinates of the window to the selected video
media player. The latter first initializes the video card with the assigned coordi-
nates and, as it decompresses the video bitstream taken from the playout buffer,
it passes it to the video card for rendering on the browser screen.

In addition, as we saw in Section 1.4.3, with entertainment applications
such as audio/video-on-demand, the user requires control of the playout
process using features such as pause and rewind. Hence with this type of
application it is necessary for the media player to pass the control commands
to the server. To do this, the media player is divided into two parts: the first
that performs the preceding playout functions — playout buffering and

988

Chapter 15 The World Wide Web

15.4.1

decompression - and the second that manages the portion of the browser dis-
play window that has been assigned for the various control buttons, This
displays and monitors the buttons on the screen and, when a button is
selected, it first adapts the playout process - for example stops output if the
pause button is activated — and then passes an appropriate command to a
remote server. A protocol has been defined to perform this function called
the real-time streaming protocol (RTSP). The server then implements the
command by, for example, stopping further output from the file.

Although it has been implied that the server is a conventional Web server,
in most entertainment applications involving streaming, in order to meet the
very high playout rates that are required when a large number of browsers are
accessing the server simultaneously, special servers called streaming servers
have to be used. In this section we shall expand upon several of these issues.

Streaming using a Weh server

Before describing how an audio and/or video file is accessed using a stream-
ing server, it will be helpful first to review how such files are accessed using a
conventional Web server, Figure 15,15 shows the protocols that are used.

Browsar display screen VWeb server

Web
files/pages

Figure 15.15 Schematic of audio/video streaming with a conventional
server,

15.4 Audio and video | 989

Using this structure, when the user clicks on a hyperlink in a page for an
audio or video file, the browser follows the same procedure as for a
text/image file. Hence the HTTP in the browser first establishes a TCP con-
nection with the HTTP in the server named in the hyperlink. It then sends a
request for the contents of the file named in the hyperlink using a GET
request message. The server responds by returning the contents of the file in
a GET response message. On receipt of this, the browser determines trom the
Content-Type field at the head of the message — for example Content-Type =
Audio/MP3 — that the accessed file contains audio that has been compressed
using MP3. Hence the browser proceeds to invoke the MP3 media player and,
at the same time, passes the contents of the compressed file to it. The media
player then proceeds to decompress the contents of the file and outputs the
resulting byte stream to the sound card.

As we can deduce from this, the disadvantage of this approach is that
since the browser must first receive the contents of the file in its entirety, an
unacceptably long delay is introduced if the contents are of any significant
size. Hence for larger files, an alternative approach is used which enables the
file to be sent directly to the media player rather than through the browser. A
schematic diagram showing how this is achieved is shown in Figure 15.16.

Using this approach, when an audio and/or video vile is created, a
second file is also created. The second file contains the URL of the first/orig-
inal file - containing the compressed audio/video — and also a specification
of the content type that is in the file. The second file is called the meta file of
the original file or, because of its function, a presentation description file.

Web client Meta file Web server

—

Avudio/video
file

Internet

Figure 15.16 Audio/video streaming with a conventional server and a meta file.

990

Chapter 15 The World Wide Web

15.4.2

This also has a URL associated with it and, when the creator of a page wishes
to include a hyperlink to an audio/video file in the page, he or she uses the
URL of the meta file rather than that of the original file.

Thus when a user clicks on the hyperlink, the GET response message
contains the contents of the meta file. The browser first accesses the Content-
Type: field from it and then uses this to invoke the related media player as
before but this time it simply passes the presentation description in the meta
file to the media player. The media player, on determining that this is a meta
file, reads the URL of the original file and then proceeds to obtain the con-
tents of the original file in the normal way using HTTP/TCP. On receipt of
the file contents, the media player simply streams the received compressed
contents into the playout buffer. After a predefined delay to allow the playout
buffer to partially fill, it starts to read the stream from the buffer and, after
decompression, outputs the resulting byte stream to the sound/video card.

As we can see from the above, this approach removes the delays that are
introduced when the file contents are accessed through the browser and
hence it is widely used when the audio/video is stored on a conventional Web
server. The limiting factor with this approach is that since the audio/video file
is accessed in the same way as a text or image file using HTTP and TCF, as we
saw in Section 12.3, TCP will transfer the file contents in segments and, if it
detects a segment is missing, the TCP at the server side will retransmit it. In
general, for files containing real-time information such as audio and/or video,
the delays introduced by the TCP retransmission process mean that large play-
out buffers are required in the media player to mask the effect of a missing
segment from the user. Because of this, the preferred transport protocol for
audio and/or video files is UDP rather than TCP. This means that HTTP
cannot be used and so a different file server from the Web server must be used
to hold the audio and/or video files. This is called the streaming server.

Streaming servers and RTSP

As we indicated earlier in this section, the main demand for streaming servers
is in entertainment applications such as audio-on-demand and movie/video-
on-demand. Typically these are provided by either a TV or a multimedia
PC/workstation via a set-top box that is connected to either a cable modem or
a high-speed modem. With such applications, as we saw in Section 1.4.3, in
order to meet the very high playout rates that are required when a large
number of concurrent users are involved, special-purpose streaming servers
are used. Also, as we indicated at the end of the last section, in order to over-
come the delays introduced by the retransmission procedure associated with
TCP, the preferred transport protocol is UDP. Hence when accessing an
audio/video file from a streaming server, normally UDP is used with the real
time transport protocol (RTP) to transfer the integrated audio and video. A
typical set-up for movie/video-on-demand is shown in Figure 15.17. A similar
set-up is used for audic-on-demand except no video is involved.

15.4 Audio and video | 991

TV/PC screen

— Cisplay window

,*I:] I:) }:} :I I:I I:Il i — Options meny

Ployoul 1.
contral
butions

da

"
1]
.

ik
*

SetHep box
or mullimedia
PC /workstgtion

.‘.llll'llll_i’l

sangunaprrdnsadenvanns

-

..

»

. - " i

L] e L]
: : Dol : : : :
: T S : : :
: . {4 H . H
5 15 .: 5
A NG SN AT NI NI NN NIRRT NN AN ARSI NSNS AR AR RSN .
7} H

AN NN RN NN IR SRR NN NN AN AN AR AS AR T RS RANEORA NN SN AAVE AT E kAR RSBt

The Internet via cable modems ar highspeed modems

RSTP = Reatlime streaming server Ports X/Y /B are ephemeral poris
Ports B0/ 554 are wellknown ports of HITP/RTSP servers respectively
Port A is allocated by The control part of the media player

Figure 15.17 Protocols associated with audio/video streaming.

As we can see, the set-up is similar to that-shown in Figure 15.16 except
the streaming server is separate from the Web server. Also, at the browser
side, the media player is divided into two parts: a data part and a control part
both of which interact with peer parts in the streaming server. The data part
is concerned with the transfer of the integrated audio and video packet
streams — see Section 5.5.1 - from the server to the client, the buffering of
the incoming packet stream in the playout buffer, the demultiplexing and
decompression of the audio and video components, and the output of syn-
chronized audio and video to the respective media cards. The control part
manages the playout process according to the commands entered by the user
via the set of on-screen control buttons.

992

Chapter 15 The World Wide Web

Typically, the screen of the TV/PC is divided by the browser into three win-

dows. The first is for use by the browser itself to display a menu of audios (CDs)
and movies/videos, the second for use by the control part of the media player to
display the set of control buttons, and the third for use by the data part of the
media player to display the video output. Also, as with streaming using a conven-
tional Web server, associated with each file containing the integrated audio/
video packet stream is a meta file containing the URL of the file and a description
of such things as the compression algorithms used and the presentation format.

The sequence of steps that occur when the user selects a movie/video

from the menu are identified as (1) through (7) in Figure 15.17. These are:

1

When the user clicks on a movie/video, the browser sends an HTTP GET
request message for the related meta file to the Web server named in the
URL of the selected hyperlink.

The Web server responds by returning the contents of the meta file to
the browser in a (HTTP) GET response message.

The browser determines from the Content-Type: field in the meta file the
media player — helper application — to invoke and passes the contents of
the meta file to the control part of the selected media player.

The control part reads the URL of the file(s) containing the integrated
audio/video packet stream and requests the control part in the
streaming server (named in the URL) for permission to start a new
session by sending an RTSP SETUP request message. Associated with this
are a number of parameters including the name of the file containing
the movie/video, the RTSP session number, the required operational
mode (PLAY, although RECORD is supported also), the RTP port
number to use, and authorization information. In response, if these are
acceptable, the control part in the server returns an RTSP accept
response message which includes a unique session identifier allocated by
the server for use with subsequent messages relating to the session.

When the user clicks on the play button, the control part of the media
player sends a RTSP PLAY request message — which includes the allocated
session identifier - to the control part in the streaming server. The latter
knows from the identifier that access permission has been granted and
returns an acknowledgment to this effect to the control part in the media
player. On receipt of this, the latter prepares the data part to receive the
incoming integrated audio/video packet stream.

At the streaming side, after a short delay to allow the client side to
prepare to receive the packet stream, the control part initiates the access
and transmission of the packet stream using the allocated port number
of RTP - port A —in the header of each UDP datagram.

The stream of packets containing the integrated audio and video are first
passed into the playout buffer of the data part of the media player and,
after a preset time delay, the packets are read from the buffer. Each
packet in the stream is first identified - audio or video — and then
decompressed using the previously agreed algorithm.

15.5

15.5 Java and JavaScript | 993

Once the play button has been selected and the movie/video started, the
user may wish to activate further control buttons such as pause, visual fast for-
ward, rewind, stop, and quit. In order to relay the appropriate command to
the streaming server, RTSP has a corresponding set of control messages. A
selection of these are shown in the example in Figure 15.18(a) and the
format of some of the messages in part (b).

Note that in order for the streaming server to send the integrated stream
of audio/video packets to the data part of the media player, the port number
that has been allocated by the control part to RTP — port A —is included in
the SETUP request message. The data part of the streaming server inserts
this in the destination port field of each UDP datagram header. Note also
that the session identifier — aliocated by the control part in the streaming
server — is returned in the response message to the SETUP request and that
this is used subsequently in all further request messages relating to this ses-
sion. Normally, the RTSP TEARDOWN request message is sent by the control
part of the media server when the user activates the quit/end button.

Java and JavaScript

A short introduction to both Java and JavaScript was presented earlier in
Section 5.4.4 and, as we saw, they are used primarily to add some form of
action and interactivity to a Web page in a more flexible way than helper
applications and plug-ins. Essentially, with Java, a program written in the Java
programming language is first compiled into what is called an applet. Each
applet is held in a file on a Web server and can be called from within an
HTML page. When called, the applet is downloaded from the file (in the
server named in the URL) in a similar way to downloading the contents of an
image file. When the browser receives the applet code, however, it passes it
directly to an integral piece of software called a Java interpreter which proceeds
to execute the applet code. A simple example that shows how action can be
added to a Web page is an applet which obtains an audio file and plays this
out as background music while the page is displayed. Alternatively, a moving
object/image could be displayed in a small window. A more complex exam-
ple that shows how interactivity can be introduced is an applet which obtains
and displays a digitized map on the browser screen and, given a pair of coor-
dinates - for example entered by the user in a frame in a separate window —
calculates and displays the best route between the iwo coordinates. Games
playing within a Web page 1s implemented in a similar way.

Similar functionality can be obtained using JavaScript except, like HTML,
this is a scripting language and the action/interactivity is obtained by embed-
ding individual scripts written in JavaScript into an HIML page when it is
written. Each script is entered into the HTML script of a page between a pair
of tags and, when the start tag is encountered, the HTML interpreter invokes
the JavaScript interpreter to execute the script.

994 Chapter 15 The World Wide Web

HTTP GET request

HTTP GET response

SETUP request

SETUP response
RTSP
PLAY request

PLAY response

Audio and video
ETP

packet stream

RTSP PAUSE request

RTSP PAUSE response
RTSP
RTSP PLAY request

RTSP PLAY response

[3
[3
[

RTSP TEARDOWIN request

RTP

RTSP

RTSP TEARDOVWN response

Assume URL of movie/video meta file = hip:/ /www.movie server.com/movies/omovie mfile
URL of movie/video file = rtsp://movieserver.com/movies/amovie mpeg

SETUP Request:

SETUP Response:

PLAY Request:

PLAY Response:

SETUP/movies/amavie.mpeg RTSP/1.0
Accept: audio/MP3, video/MPEG1
Transport: RTP/UDP. port = A, Mode = PLAY
RTSP/1.0 200 Accepted

Server: Movie player

Location: movieserver.com

Session: 1234

PLAY /movies/amaovie.mpeg RTSP/1.0
Session 1234

RTSP/1.0 200 Accepted

Figure 15.18 Real-time streaming protocol (RTSP): {(a) example
message exchange sequence; (h) a selection of message formats.

15.5.1

15.5 Java and JavaScript 995

Both Java and JavaScript have many similar features to those provided by
the C and C++ programming languages. Hence a complete description of
them is outside of the scope of this book. In this section, therefore, we restrict
our discussion 1o how an applet/secript written in these languages is incorpo-
rated into an HTML page.

Java

Java applets provide a browser with similar functionality to helper applicatons
and plug-ins. In the case of the latter, however, they are an integral part of the
browser whereas a Java applet is downloaded from a Web server when it is
required. The advantage of this is that the applet code can be changed at any
time without modifying the browser code. Then, when the old version of the
applet is replaced with the new version, this is downloaded automatically the
next time the applet is called. For example, if the applet implements a com-
pression algorithm and a new one is developed, the existing applet can be
replaced by a new applet without changing the page contents or the browser.

In order for the downloaded code of an applet - the file of which has the
type class — to run on a range of different computers/machines, when an applet
is written it is compiled into a machine-independent code cailed bytecode and it
is this version of the applet that is stored in the file on the Web server. Essentially,
the bytecode of an applet is an intermediate code between the high-level Java
programming language code and the machine-code version of the applet pro-
duced for running directly on a specific target machine. To run the bytecode
version of an applet, a browser that supports applets has an integral piece of soft-
ware - or sometimes a helper application — called a bytecode interpreter. This
parses the bytecode to identify the individual commands - called methods — that
it contains and then executes each of these using a related procedure/function
written in the machine code of the target machine. Hence when an applet is
called from within a Web page, the downloaded bytecode is simply passed by the
browser to the bytecode interpreter for execution.

Applet tags

In versions of HTML before HTML 4.0, the inclusion of a Java applet in an
HTML page is carried out using the <APPLET> tag. For example, assuming
the URL of the current Web page is:

hitp: /S, UoW.edu /fava-apps/ "

to include the applet stored in the file bgsound.class on the same server as the
current Web page, the script

<APPLET CODE = "bgsound.class"></APPLET>

is used. When the HTML interpreter in the browser encounters the
<APPLET> tag in the HTML code, it proceeds to obtain the contents of the

996

Chapter 15 The World Wide Web

file - the bytecode - from bgsound. class and passes it to the bytecode inter-
preter. The latter proceeds to interpret the bytecode of the applet which,
typically, accesses a specific file of compressed audio, decompresses it and
then outputs the resulting byte stream to the sound card to play the back-
ground music.

As we can deduce from this, there is no separation between the applet
bytecode and the data on which it operates. Also, there is no type definition
associated with the data. So to obtain more flexibility, in HTML 4.0 and later
versions, the <APPLET> tag is replaced with the more general <OBJECT> tag.
Using this, in addition to Java applets, a number of other types of object can
be included within an HTML page. These include an image (file), an audio
and/or video (file) or, if required, another Web page (file). To achieve this
added flexibility, the <OBJECT> tag has a number of attributes associated
with it. These include:

B CODEBASE: this is the URL of the file server and the pathname of
where the objects - for example the applet and any data it operates on —
are located;

W CLASSID: this specifies the name of the file containing the agent — for
example the applet bytecode — that will render the data. Normally, the
file name of an applet is prefaced by the new URL type java;

B DATA: this specifies the name of the file containing the object/data on
which the agent specified in CLASSID operates;

B CODETYPE: this specifies the type of the object/data defined in DATA in
MIME format;

& ALIGN, HEIGHT, WIDTH, ALT: these have the same meaning as those
we defined earlier in Section 15.3.4 relating to images.

An example declaration showing the use of some of these attributes -
using the same URL as before ~ is as follows:

<OBJECT CODEBASE = "http://www.UoW.edu/java-apps/"
CLASSID = "java:bgaudio.class”
DATA = "bgaudio.data”
CODETYPE = "audio/MP3"> </OBJECT>

In this example when the HTML interpreter in the browser encounters
the <OBJECT> tag, it requests the Java applet stored in the file specified in
CLASSID to be downloaded by the server specified in CODEBASE (which
also includes the pathname of the file). The name of the file specified in
DATA and the datatype — audio/MP3 - specified in CODETYPE are then
passed to the bytecode interpreter together with the bytecode of the applet.
In the case of an image or video object, the HEIGHT and WIDTH attributes
would be used to specify the size of the window that should be used to display
the image /video.

15.5.2

15.5 Java and JavaScript | 997

Java basics

Java is an object-oriented language which means that almost everything is
defined in the form of an object. Normally, like a procedure or function in a
programming language like Pascal or C, an object contains one or more vari-
ables encapsulated within it. Also, associated with each object are one or more
operations called methods and it is these that are invoked to manipulate the
variables within the object. This concept is referred to as encapsulation.

Multiple instances of an object can be created - either statically or
dynamically during the execution of a program/applet — each of which is said
to be an instance of the same object class. A typical Java applet comprises
many objects — and hence methods - each of which is an instance of a partic-
ular object class. Also, in addition to writing your own object class definitions
from scratch, like all programming languages, there is a large library of stan-
dard object classes that can be included with your own. These are grouped
into what are called packages and two examples are:

® Java.io: all input and output such as reading a file, outputting a byte
stream, and so on is done using the methods associated with the object
classes in this package;

B Javaapplet: this contains object classes and methods for getting a Web
page from a given URL, displaying a Web page, decompressing and
playing out the contents of an audio and/or video file, and so on.

There is also a range of Java development kits available that can be used
to create applets. A good source of information for this is at

hitp:/ fwun javasoft. com/

JavaScript

As we indicated earlier, despite its name, JavaScript is a completely different
language from Java. It is a scripting language and the script is embedded
within an HTML Web page between the <SCRIPT> and </SCRIPT> tags.
Providing the browser is able to interpret JavaScript code, when it detects the
<SCRIPT> tag it proceeds to interpret the code up to the </SCRIPT> tag as
JavaScript rather than HTML.

Unlike HTML, JavaScript has many high-level programming language
features similar to those available with C and C++. For example, a variable can
be of type boolean, numertic, or string. Also, arithmetic, logical, and bitwise
operators are supported as are for(} and while() control loops. Functions
are also supported.

Objects

JavaScript is object-oriented. Each object has one or more methods associated
with it that allow the object to be manipulated in some way. For example, the

998

Chapter 15 The World Wide Web

current displayed Web page - referred to as a document in JavaScript — is an
example of a library/predefined object class and one or more expressions
(such as a text string) can be displayed in the page window using

document.write (lext string/expression(s))

Here the object name is document and the method is write ~ writeln can also be
used. Additional methods are also provided to determine such things as:

B the URL of the document: document. URL,
B the title of the document: document.title.

A simple example that shows how a JavaScript is embedded into an HTML
page and how the above two methods can be used is shown in Figure 15.19,

(a}

(b) <HTML><TITIE> Example 1 </TITIE>
<BODY>
<H1> EXAMPLE SCRIFT ONE </H1>
This example illusirates how a script writien in JavaScript is embedded
infc an HTML page/document. The script simply writes the URL of the page
on the screen: <P>
<SCRIPT LANGUAGE = "JavaScript'>
document write ['URL =", document URL) <P>
document write ['Title =", document.title) < /SCRIPT>
<P> End of example.
</BODY></HTML>

Figure 15.19 JavaScript principles: (a) an example of a displayed
page/document containing a JavaScript embedded into it; (b) the
script for the page.

15.5 Java and JavaScript i 999

Another widely used predefined object class that is used to obtain interac-
tivity is window and again several methods are provided with this. For
example, to create a new window — as a dialog box for example — the open
method is used. An example statement is:

"MyWindow" = window open (width = "200", height = "200", scrollbars = "Yes")

This would open a new window called MyWindow of a defined size (in pixels)
and with scrollbars. Some text could then be included in the script and this
would be displayed within the window. The same window can later be closed
using the close method. The statement in this case would be:

Mywindow. close
Other widely used methods associated with the window object class are:

® window confirm { “message”): this is used to display a confirmatory dialog
box with the specified message within it and an OK and Cancel button;

B window.prompt ("message”): this is used to display a prompt dialog box with
the specified message within it and an input field;

B windowalert ("message”): this is used to display a box with the specified
message within it.

Some other predefined object classes are array, boolean, date, and math.
For example, the math object class includes methods to return a value for pi
and to carry out the sin and cos functions. An example segment of script
showing their use is:

avariable = math.PI*math.cos {math.PI/6}

Alternatively, when the script contains several occurrences of methods from
the same object class the with statement can be used:

with {(math)
“{avariable = PI*cos (P1/6)} //comment: note the use of curly braces

A new instance of an object class can be created within a script using the new
operator and the keyword his is used to refer to the current object in which
the keyword appears.

Forms and event handling
We introduced the <FORM> and <INPUT> tags earlier in Section 15.3.6. As
we saw, these provide the means for the browser to get input from a user

which, typically, is sent to a CGI script in a remote server for processing. In
addition, a form can be declared without the ACTION and METHOD

1000

Chapter 15 The World Wide Web

15.6

15.6.1

attributes and the input processed locally by the browser using a JavaScript
script. Also, in order to enhance this capability, JavaScript allows a number of
what are called event handlers to be specified. Then, when a specific event
occurs — for example the user clicks on an entry in a displayed table of values
- a related block of JavaScript code is invoked which, for example, might be
to perform a computation on the value that has been clicked on. Two exam-
ples of event handlers that are supported are:

@ onBlur: a Blur event occurs when an option from a list on a form is
selected or some text is entered in a text field;

B onClick: the Click event occurs when an option on a form is clicked. The
option can be selected using either a button, check-box, radio, reset,
submit, or link.

An example showing a segment of script that illustrates the use of an event
handler is given in Figure 15.20. In this example the user is prompted for his
or her user name and password and, when each is entered, the related
onBlur event handler is invoked to check its validity. As we can see, each is
checked using a different function and, if either fails, an appropriate message
is output in an alert window.

Security

When carrying out a transaction over the Web relating to an e-commerce
application, since in many instances this involves sending details of a user’s
payment card, the security of such transfers js vitally important. For example,
an eavesdropper with knowledge of Internet protocols could readily intercept
the information entered on the order form and, having got the name and
other details about the card, proceed to use these to carry out purchases of
their own. A second potential pitfall is that the Web site from where the pur-
chase is being made may not in reality have anything for sale and, prior to the
agreed delivery date, abscond with the money that it has collected, In addi-
tion, in electronic banking (e-banking) and other financial applications, a
client may masquerade as another person. Any security scheme, therefore,
must be able to counter each of these threats.

SSL

An example of a widely used scheme is the secure socket layer (SSL) proto-
col, As the name implies, SSL operates at the socket interface which, as we
saw earlier in Section 12.3.1, is between the transport layer (TCP) and the
application layer in the TCP/IP reference model. Essentially, SSL carries out
the authentication of the server by the client — and the authentication of the

15.6 Security |1001

e B
o o,
+Name not recognized *

-

(b) .

<FORM>

Enter your user name: <INPUT NAME = "username” onBlur = "checknome (username value]'>
Enter your passward: <INPUT NAME = “password” onBlur = *checkpassword {password.value|'>
</FORM:>

*
L]
L

<SCRIPT>

function checkname {aname)

{iflaname! = "myname’) window.alest Name not recognized')
function check password japassword]

{if [apassword! = "mypassword’) window.alert ["rong password'}
</SCRIFT>

Figure 15.20 Example showing event handling within a form: (a) a
portion of the display; (b) the script associated with it.

client by the server if required — by using a recognized certification authority
— see Section 13.6 — and the establishment of a symmetric encryption algo-
rithm and key for the session. It then uses the key — called a session key - to
encrypt/decrypt all of the messages that are transferred as part of the trans-
action. The location of the SSL protocol in the stack is shown in Figure
15.21(a) and a summary of the steps that are followed to establish a secure
socket connection are listed in part (b} of the figure.

As we can see, the HTML interpreter part of the browser has cwo path-
ways/sockets available to it, an insecure socket connection and a secure
socket connection. When a user clicks on a link to an SSL-enabled server, the
protocol/method part of the URL is Altps: rather than hitp: . On detecting
this, the HTML interpreter invokes the SSL protocol code which proceeds to
carry out the steps shown in Figure 15.21(b).

1002

Chapter 15 The Warld Wide Web

(a) Web client (C) SSlenabled Web server(S)

551 protoco] ———i)

The insecure
Internet

(b)

Certification Client Vendor's
authority browser server
(8
Keap [S's name]
Authentication { Keas {97 certificate)
Kgp [DES/IDEA]
o || et
Kep Kyl
Keg [, ack] } Session key exchange
Ky [Transaction begin]
Ksy {Transaction begin] } Transaction iniliation
Kgg {Transaction message]
E Transaction message
Kgy [Transaction message] } onslers
Keapss Keppg = CAS5, 5's public/secret keys g = lsymmelric) session key

= C has authenticated S and has §'s public key, Kep

Figure 15.21 The secure socket layer (SSL) protocol: (a) protocol stack;
(b) outline of the authentication and transaction initiation phases.

15.6 Security | 1003

As we can deduce from the list of steps, the establishment of a secure
socket connection is carried out by the exchange of an ordered set of HTTP
request/response messages which collectively form the SSL protocol. When
interpreting the steps shown in the figure, the following should be noted:

B Authentication using a CA;

C authenticates S by first checking that the CA named in S's Web page
is on the list of recognized CAs. If so, C reads the public key of the CA
from the list and then requests §'s certificate from the CA by sending
it §’s name in a request message. The CA then sends the certificate in
a response message.

On receipt of the certificate, C decrypts it using CA’s public key and
checks that the name on the certificate is that of §. If so, C assumes S is
authentic and reads the public key of S from the certificate.

®m Cryptographic algorithm negotiation:

Once § has been authenticated, C proceeds to negotiate with § a
suitable (symmetric) cryptographic algorithm for the transaction.

To do this, C sends its preferences - DES or IDEA for example —
together with proposed operational parameters in a request
message to 8. S responds with its choice of one of these in the
response message.

®m Session key exchange:

C generates a random (symmetric) key for the transaction and
encrypts it using S’s public key. C then sends the encrypted key in a
message to S.

On receipt of the message, S decrypts the message using its own
private key and returns a response message to C acknowledging that it,
too, now has the sesston key.

8 Transaction initiation:
- Csends an encrypted message to S informing S that it is now ready to

start the transaction and that all future messages will be encrypted.

- On receipt of this, S returns an encrypted response message that it,

too, is now ready to start the transaction.

B Transaction information transfer:
- Once a secure socket connection has been established, each message

relating to the transaction that is sent/received over the socket is
encrypted/decrypted using the agreed symmetric session key.

When using SSL in banking and other financial applications, normally,
when a client starts a new session, it is the SSL in the server that authenticates
the client before entering into a transaction.

1004

Chapter 15 The World Wide Web

15.6.2 SET

A potential loophole with SSL is that although the scheme allows the client to
authenticate that the server is a recognized server, because the server’s bank
is not involved in the authentication process, the server’s certificate does not
guarantee that it is authorized to enter into transactions that involve payment
cards. Similarly, the client’s certificate does not guarantee that the client is
using his or her own card. To counter these loopholes, the major card com-
panies have introduced a scheme that has been designed specifically for card
transactions over the Web/Internet. The scheme is called secure electronic
transactions (SET). _

In the SET scheme, in addition to the client (the purchaser) and server
{the vendor), the client and vendor’s banks are also involved also in carrying
out a transaction. The purchaser, vendor, and vendor's bank all have certifi-
cates and, in the case of the purchaser and vendor, the certification authority
is their respective bank. The purchaser’s certificate, in addition to the pur-
chaser’s public key, also contains the name of the purchaser’s bank. This
enables, firstly, the purchaser to verify that the vendor is allowed to enter into
payment card transactions and secondly, that the purchaser is using a legiti-
mate card.

In practice, the SET scheme is relatively complex. However, an outline of
the sequence of steps followed to carry out a card purchase electronically is
shown in Figure 15.22. The following should be noted when interpreting the
sequence shown:

@ Three items of software are involved:

- the browser wallet: this runs in the client and contains details of all the
payment cards the vendor currently holds;

- the vendor server. this is the Web server and, in addition to responding
to requests for product information, it manages the {electronic)
purchase of items from the vendor’s catalog;

- the acquirer gateway. this is located in the vendor’s bank computer and
manages the payment phase of a purchase;

® For each new purchase, the vendor allocates a unique transaction
identifier (TI) and this is included in all subsequent messages.

® During the order and purchase phases, the order information sent to the
vendor contains only the card name and it is the purchase information
that is sent to the vendor’s bank that contains the actual card number.

B The payment request is carried out using existing inter-bank fund
transfer procedures,

Further information about SET can be found in the bibliography for
this chapter.

15.6 Security | 1005

Client Vendor's Vendor's Client's
browser, C server, S bank, B bank

[Purchase request +

C and CB's name] Kegp [T+ C's name]

Keps [Ti+ C's certificate]

Authentication
phase

Kee [T+ 5 and B names!

Kgp [T + Kep + S's name]

Kep [T+ S and B's certificates]

3

Kgg [T1 + Invoice]

Ordler
phase Ksp [O1]
r Kgp [P1]
Payment request
Purchase and Payment granted
payment 4
phase

Kep [TH + payment ack]

Ko [T + Receipt]

Tl = transaction identifier O = arder information = T + card name
Pi = purchase information = T + card name + card number + amount

Kearss Kepss Kspre Kaprs = CBS, C's, 55, B's public/secret keys
@ = C is avthenticated and § has C's public key

@ - B and C have been authenticated and C has § and B's public key

Figure 15.22 OQutline of the operation of secure electronic transactions (SET).

1006 \ Chapter 15 The World Wide Web

15.7

15.7.1

Web operation

So far in this chapter we have described a range of topics relating to how a
Weh page is created and transferred over the Internet. In the last section we
saw how transactions over the Internet are made secure. In this section we
describe a number of issues relating to how the Web is organized and its key
operational parts.

The first issue is how the presence of a server with a new set of pages/docu-
ments becomes known to users of the Web. There are a number of ways this
can be done. For example, as we saw carlier in Section 15.2.1, the URL of the
home page (together with a description of what the page is offering) can be
posted to a related newsgroup within UseNet using the news: protocol/method.
Alternatively, a more popular method is to use what is called a search engine
together with a special browser called a spider (or robot).

The volume of information on the Web is already vast and is increasing
continuously. In practice, however, only a small subset of this information is
of interest to a particular user. The second issue, therefore, is how a user
gains access to this subset of information without having to search the entire
Web. This is done using an intermediary called a portal. We shall describe
each of these issues separately.

Search engines

Before we can describe how a new Web page is made available over the Web
we must first build up an understanding of how the search process is carried
out by a search engine to find and retrieve a Web page. As we saw in Section
15.2, each Web page/document is accessed using the page’s URL which,
since it contains the unique domain name of the server computer on which
the page/file is stored, is unique within the entire Web/Internet. Hence pro-
viding we know the URL of a page, a browser can readily obtain and display
the page contents. To help with this, all browsers allow the user to keep a list
of URLs in a table and provide facilities for the user to select, add, and delete
entries. Nevertheless, in many instances, when searching for information on
the Web, the user does not have a URL but rather he or she is interested in,
say, any pages relating to a specific topic/subject. As a result, a directory is
required. This is analagous to a telephone directory since, for each entry, a
Web directory contains some information that describes the contents of the
page plus its URL. A key issue is what this information should be and how it is
used to find a specific URL.

A second issue relates to the size of the directory. As we have said, the
number of Web pages is already vast and is increasing continuously. 1t would
be totally infeasible to have a single large directory since the time required to
carry out each search operation would be endless. This also applies to the
telephone directory system of course and, to make searching the latter faster,
the directory is fragmented into many separate sections. Typically, this is

15.7 Web operation | 1007

based on geographic location and, at a local level, the directory is divided
into business and residential subscribers. When the telephone number of a
customer is required, in addition to the customer’s name, the location of the
customer and whether it is a business or private residence is requested. In this
way the search for the given name is restricted to a small subsection of the
total directory.

The same approach is followed for the Web directory except the partition-
ing of the directory is not as straightforward. As we indicated earlier, with the
Web the search information/index is based on a given topic/subject which 1is
much less precise than a given name and location. For example, since each
page has a title field, in principle, this could be used as the search index for
the page. In practice, this cannot be done since in many instances a title is not
given and, when one is given, it often bears no relation to the actual page con-
tents. Instead, therefore, for each page, an additional block of information —
normally in the form of a string of keywords — that describes the contents of
the page is defined and it is these that are used as search indexes.

In practice, the choice of keywords to go with each URL varies widely
and, as a result, there are a large number of different search engines in exis-
tence. In general, however, most allow a user to add the URL of the home
page of a new set of pages to their current set of directories. Normally, this is
done by first accessing the home page of the company that manages the
search engine and, through this, a fill-in form is obtained. This is then filled
in by the user and, when it is submitted, the page is added to the related
directory. Alternatively, there are commercial organizations which, when a
new URL is submitted, will add this to a number of search engines for you.

Spiders and robots

There are two different ways to obtain the search indexes for each page. One
involves the person who submits the page providing a set of keywords in the
same fill-in form that is submitted/posted to the owner of the search engine.
These are then used to determine into which directory the URL should be
inserted. In the second method, only the URL is submitted and it is the com-
pany which manages the search engine that obtains the keywords. It does this
by using a special browser called a spider - also called a robot or simply bot —
which, when given the submitted URL, accesses and then searches the con-
tents of the page for specific keywords. It then uses these to enter the URL
into the most appropriate directory(ies). The spider then follows all the links
from the submitted home page and derives a set of keywords for each of
these pages too. In addition, to make people aware that a new set of pages is
now available, most search engine companies allow the URL of the home
page (together with an associated set of keywords) to be posted to their
What'’s New site. Normally, the page is then kept in the What's New directory
for a set period of time.

Since in the second method it is the spider/robot that determines the set
of keywords to be used, these may not be an optimum set as seen by the writer

1008

Chapter 15 The Warld Wide Web

15.7.2

of the page. Hence when a spider is used, it is possible to direct the spider by
including in the page header a list of the keywords that the writer feels
should be used. The given list of keywords is called the meta information for
the page and is included in the page header between the <HEAD> and
</HEAD?> tags. The list of keywords is given within the <META> tag using the
following arguments:

® NAME = "keywords"; to allow for other types of meta information, this
informs the HTML interpreter that what follows is a list of keywords;

B LANG ="language": the language used for the keywords, for example
en-lIS, es (Spanish), fr (French);

m CONTENT = "list of keywords": the list of keywords with a space between
each,

An example format is:

<META NAME = "keywords"
LANG ="en-US"
CONTENT = "vacations holidays walking beach activity hotels
scubadiving - - -">

Portails

As we indicated earlier, there are many different search engine companies/
sites available which, given a set of keywords, will carry out a search through
their directories and return details of a list of up to, say, 10 Web sites that give
the best matches with a given set of keywords. Typically, the returned details
for each site are in the form;

Match: "B0%"

Title: - "The name of the Web site”

URL: "The URL of the home page"

Summary: "A summary of what this site has to offer”

More: "Click on this link to initiate a search for more pages like this
one"

and are listed according to their match field,

To help you find the best search engine sites, most browsers have a
button on the display which, when clicked, returns a list of a number of sites
together with some information about what each has to offer. In addition,
many Internet service providers (ISPs) provide a facility to help a user find
the best search engine site(s) for a given set of keywords. This is referred to as
the ISP’s portal since it acts as a gateway to the vast collection of Web
sites/ pages that are now available.

Summary | 1009

Essentially, the portal has knowledge of a large collection of search
engine sites and their directories. Given a set of keywords, the portal will
select the site that it thinks has the best directory relating to the query. In
addition, some portals will interact with the user through a form to obtain a
more focussed set of requirements before returning the URL of what it thinks
is the best site. Some ISPs also allow a user to create his or her own personal-
ized portal. Then, by simply clicking on the portal page, the user is able to
access his or her own preferred sources of information relating to, say, news,
sport, weather, entertainment, and so on.

In this chapter we have described selected aspects of the operation of the
World Wide Web. The list of topics is summarized in Figure 15.23. They can
be grouped under the following headings:

B how a Web page is written in HTML and accessed over the Interneg;

8 how audio and video are incorporated into a Web page and accessed in
real time using either a Web server or a sireaming server. Also, how the
user can control the way the audio and/or video is played out using the
real-time streaming protocol (RTSP);

B an introduction to Java and JavaScript and the features each provides;

® security in e<commerce applications using the secure socket layer (SSL)
and secure electronic transactions (SET) protocols;

B an introduction to the operation of the Web including the role of search
engines and portals.

1010

Chapter 15 The World Wide Web

Java and JavaScript

Security in Web transactions

]

| I
SsL SET

l |

|

Web operation

|

| |
Search engines Portals

l |

]

Exercises

Figure 15.23 Summary of the topics discussed relating to the Webh.

The World Wide Web
URLs
I I ! l | !
hitp fip: file: news gopher: mailto:
|]]] I |
HTTP
Message types Message formats . Conditional GET - -
| |
HTML
[1 | I | |
Text format Lists Color Images and Tables Forms and Frames
direclives | | lines CGl scripts
| l
Audic and videc in Web pages
| ‘ |
Streaming using a Web server Streaming servers RTSP
l]

Exercises { | 1011

Section 15.2

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

With the aid of a diagram, in a few sentences,
explain each of the following terms relating to
the Web: a browser, a server, HTTE, HTML,
hyperlinks, URLs.

Assuming the URL of a Web page is:
http:/ farww,. UoW.edu frospectus /index. himi

identify the application protocol/method
that is used to access the page, the domain
name of the server, the pathname of the file,
and the file name.

Assuming the URL
[ip:/fwurw. mpeg.org/mpeg-4/

determine the directory and file name of
the page.

Assumning a user clicks on the URL
Sfip:/ furwm mpeg. ovg/mpeg-4

explain what type of information is returned.

Give an example of a URL that uses the file
method and explain one of its uses.

Outline the operation of UseNet including
the role of newsgroups, a news reader, and
NNTP. Hence explain how the home page of
a new set of linked pages could be
announced from within a Web page to a
related newsgroup over UseNet.

Outline the steps that are followed by the
browser to enable a user to send an email
message from within a Web page.

Explain the meaning of the term "URI” and
how it differs from a URL.

With the aid of a diagram, show the protocol
stack that is used in a Web client and Web
server to obtain a page/block of data using
the HTTP application protocol/method.

15.10

15.11

15.12

15.13

15.14

15.15

Include in your diagram a DNS name server
and explain its role in relation to obtaining

the page.

Describe how it is possibie to obtain satisfac-
tory performance with a simple request
response application protocol for transfer-
ring a page over the Web.

List the advantages and disadvantages of

using the following types of TCP connections

for a Web session:

() nonpersistent connections,

(ii) muldple concurrent nonpersistent
connections,

(iii) persistent connections.

In relation to HTTP, state the difference
between a simple request message and a full
request message. How does HTTP discrimi-
nate between the two message types?

Using the example HTTP request/response

messages shown in Figure 15.3:

(i) state the implications of the presence of
the HTTP/1.1 and Connect:close fields in
the request message

{ii) if the response message related to, say, a
JPEG image rather than an HTML
page, give a typical set of content-
related fields.

Explain the role of a cache server and how its
use can speed up the time to obtain a Web
page. Clearly indicate where the savings arise
and how they can be reduced further by
using a hierarchy of cache servers.

State how a conditional GET request message
differs from a GET request. Hence, with the
aid of a diagram, illustrate the message
sequence that is followed when a hrowser
obtains the contents of a named file from a
named {origin) server via a proxy/cache
server, Assume the contents of the file have
been modified since the date given in the
conditional GET request message.

1012

Chapter 15 The World Wide Web

Section 15.3

15.16

15.17

15.18

15.19

15.20

15.21

15.22

"With the aid of an example, explain the

terms “absolute URL” and “relative URL”
including the retationship between the two.

In relation to the HTML script shown in
Figure 15.5, assume the contents of the page
accessed through the link The University are as
shown in the right frame of 15.13(a).
Assuming frames are not being used, write
the HTML script for the portion of the page
that is displayed.

In relation to the HTML script shown in
Figure 15.5, show the changes to the script if
the complete prospectus was on a single page
rather than a linked set of pages. State the
advantages and disadvantages of doing this.

Assuming the index for this book isto be on a
single Web page, write the fragment of
HTML script for the first five entries in the
list of contents for this chapter using the
<0L.> tag.

In order to enhance your Web page, you
decide to introduce color into it. Show how
you could direct the HTML interpreter in a
browser to make the background color
yellow, the text in the page orange, each link
red, and a visited link blue.

In relation to the two displayed images
shown in Figure 15.7, produce a segment of
HTML script:

(i) to display the UoW crest/logo in the
center of the page with the first-level
heading starting below it — part (a),

(i) to start the text at the top edge of the

text — part (b)

to make the image shown in part (b) a

hyperlink.

(i}

Give the additions to the HTML script shown
in Figure 15.5 to produce a bold line that
divides the heading from the remaining text.

Assume the table shown in Figure 15.9(b) is
to be changed so that there are four columns
CO, CLS, CBR, and VBR with a + character in

15.24

15.26

15.26

15.28

those column positions where the related fea-
ture is true. For example, for the LAN row,
the CLS and VBR columns would each have a
+ character and the other two columns would
be left blank. Produce the HTML script for
the table.

Give the changes to the HTML script shown
in Figure 15.9(c} to align the contents of the
cells in the NETWORK column to the left
edge of the cell.

Give the outline of an HTML script to pro-
duce a table that comprises 3 columns and
3 rows with the second and third cells of the
first column combined and the second and
third cells of the second row combined.
Assume the 3 cells in the first row are for
headings and the contents of all cells are to
be left blank.

(i) State the purpose of a fillin form and
an associated CGI script.

(i) Use an example FORM declaration to

explain the use of the ACTION and

METHOD attributes.

List some of the alternative ways input

can be obtained from a user.

(311}

Use the <INPUT> tag with appropriate attrib-
utes to create the following form. Include in
your HTML script an example URL for the
ACTION attribute.

ICE CREAM ORDER FORM
Name:
Address:

Phone number:

Please check flavors:

Vanilla[] Chocolate (1 Strawberry (]
Please indicate how many boxes you require:
One] Twol] Threel]

Payment card Type: MC [visal]
Number: Expiry date:

Submit order Reset order

List a typical set of responses for the various
fields in the form shown in Exercise 15.27.
Explain how these are sent to a CGI
script/program in the server given in your
example URL.

15.29

15.30

Show how the choice of flavors in your
HTML script for Exercise 15.27 could be pre-
sented using a pull-down menu.

Assume you want to create an album for your
digitized photographs on your own computer
which can be viewed through the browser.
Write a segment of an HTML script for a
page template that divides the display window
into four quarters using frames. Include in
your script the URL of the image/photo-
graph you want to display in each frame.

Explain the meaning and use of an in-line
frame. Write a segment of an HTML script
that shows how a second frame can be used to
display the contents of a page that is refer-
enced in the current page.

Section 15.4

15.32

15.33

15.35

When downloading a Web page comprising
audio and/or video, by means of examples,
explain why streaming and a playout buffer
are used. Hence list and explain the func-
tions performed by a media player.

With the aid of a diagram, explain how a file
containing a short video clip — comprising
audio and video — is streamed from a Web
server and played out by a browser that has
both an audio and a video media player.
Include in your diagram the protocols that
are used to transfer the media.

With the aid of a diagram, explain how the
playout process used in the last exercise can
be improved by using a meta file. Include in
your diagram the protocols that are used to
transfer the meta file and the media streams.

ldentify the limitations associated with this
approach.

With the aid of a diagram, explain how a
movie/video is accessed from a streaming
server and played out by a browser. Include in
your diagram the protocols that are used at
both the server side and the client side
including, in the case of the various applica-
tion protocols, their port numbers and use.
Inciude in your explanation the sequence of

15.36

1613

Exercises

steps that occur when the user first selects a
movie/video.

List a typical set of control buttons associated
with the playout of a movie/video on the
screen of a TV/PC. Hence use a diagram to
illustrate the application protocol and con-
trol/data parts of the media player that is
involved when the user carries out the follow-
ing sequence:

(i) initiates the showing of a movie /video
(ii} activates the play button

(iii) activates the pause button

(iv) activates the quit button,

Section 15.5

15.37

15.38

15.39

15.40

15.41

Both Java and JavaScript can be used to add
action and interactivity to a Web page.
Explain briefly how this is done in each case.

In relation to the Java programming
language, explain the meaning of the follow-
ing terms:

(i) anapplet,

(ii) bytecode,

(iii} bytecode interpreter.

Give an example segment of HTML script
that uses the <APPLET> tag. Explain the
actions that are followed by the HTML parser
and bytecode interpreter when the tag is
encountered in the script. Include in your
description an example URL for the page
and the name of the file associated with the
<APPLET> tag.

In HTML 4.0 and later versions, the
<OBJECT?> tag is used in preference to the
<APPLET> tag. Explain why this change has
come about. Give an example declaration of
a Java applet using the <OBJECT> tag and an
associated set of attributes. Clearly identify
the role performed by each attribute.

Explain the meaning of the following terms
relating to the Java programming language:
(i) an object,

(ii} a method,

(iii) encapsulation,

1014

15.42

15.43

Chapter 15 The World Wide Web

{iv) object class,

(v) package.

Give two examples of a Java library package
and explain their function.

Like Java, JavaScript is object-oriented. Show
how the document object class and the associ-
ated .uwrite, .URL and .title methods can be
used in a JavaScript that is embedded in an
HTML page.

By means of examples, explain the meaning
of the term “event handler” in the context of
the JavaScript programming language. Hence
explain how an event handler can be used in
conjunction with a form to perform a specific
action when the event occurs. Use as an
example a form that takes as input the name
and password entered by a user and performs
checks on these.

Section 15.6

15.44

15.45

15.46

Give three examples of security threats that
illustrate the need for additional security
measures in e-commerce and e-banking
applications. '

In relation to the secure socket layer (SSL)
scheme, with the aid of a diagram, explain
the function of the various protocols that are
used to carry out a secure transaction.
Include in your description how the HTML
interpreter differentiates between a secure
and an insecure transaction.

To carry out a secure transaction using the
S8SL scheme, the following five steps are

required:
(i) authentication using a certification
authority

(i1) cryptographic algorithm negotiation
(iii) session key exchange

15.47

15.48

15.49

(iv) transaction initiation

(v} transaction information transfer.

With the aid of a diagram and selected keys,
illustrate how each of the above steps is
carrted out.

Identify a potential security loophole with
the SSL scheme and state how the secure
electronic transactions (SET) scheme over-
comes this.

Identify the four main players that are
involved in the SET scheme and give a brief
description of the role of the software associ-
ated with each of them.

Assuming public key cryptography through-

ott, use a diagram to show how:

(i) the client authenticates the vendor and
vice versa

(i1) the client sends an order o the vendor

(iii) the client carries out the purchase and
paymernt operations.

Section 15.7

15.50

15.52

Outline the role of a search engine. ldentify
the two main issues that influence its design
and explain why keywords are used.

Explain the role of a spider/robot in relation
to a search engine and how this can be influ-
enced by the writer of a page by providing
meta information. By means of an example,
show how the latter is included in a Web page
using the <META> tag and the NAME,
LANG, and CONTENT atiributes.

By means of an example, explain the struc-
ture of the information that is returned from
a search operation. Also explain the role of a
peortal in carrying out a search.

